12 research outputs found

    Winter wheat morphology response to cold temperature stress during autumn acclimation

    Get PDF
    Winter wheat (Triticum aestivum L.) abilities depend on development during autumn acclimation. The plant ability of acclimation to low temperatures is closely associated with the photosynthesis level, leaf area index (LAI), root system development. This study investigated the effect of liquid humic fertilizers (LHF) on biometric characteristics, namely LAI, root and shoot development. The fertilizers were applied in conventional and organic growth technologies of w. wheat to adapt to the low temperatures during autumn acclimation. Winter wheat «Širvinta 1 » was grown in different rotation fields of conventional (CF; Albi-EpihypogleyicLuvisol, LVg-p-w-ab) and organic (OF; Hapli-EpihypogleyicLuvisol, LVg-p-w-ha) farming of Training Farm at Aleksandras Stulginskis University (ASU) during 2010–2011. The obtained results confirmed the significant LHF influence on enhancing winter wheat biometrical indices and seedling growth. Nonetheless, seed felting exhibited stronger effect on LAI (increased by 0.7-1.1 g m -1 day -1 in OF and 0.25-0.7 g m -1 day -1 in CF), root length (increased by 1166 mm in OF and 1182.55 mm in CF) and area (increased by 72.45 mm 2 in OF and 588.7 mm 2 in CF) during autumn acclimation rather than seedling spraying

    Phytosociological and Economical Properties of Some Water-Meadows of Nemunas, Lithuania

    Get PDF
    The water meadows of Nemunas in Lithuania have a high biological diversity as well as economic value. This paper describes the syntaxonomic type of meadow communities, plant species diversity of some water meadows of Nemunas, estimating the productivity of these grasslands in the summers of 2002 and 2003 and the optimal method of management

    Seasonal carbon exchange in organic and conventional ley and winter wheat agroecosystems in central Lithuania

    No full text
    Due to the increase in anthropogenic CO2 emissions in the atmosphere, the choice of technologies for mitigating climate change is becoming an important challenge for the agricultural sector. The investigation of two farming types, i.e. organic (OF) and conventional (CF), and their environmental impact on the carbon budget in ley (grass-clover) (G) and winter wheat (W) agroecosystems was carried out in 2014 - 2015 at the Training Farm of the Aleksandras Stulginskis University. For the estimation of carbon exchange, the closed chamber method with a portable measurement system was used. Compared with CF, OF reduced the mean soil respiration by 12% (p = 0.31) and 13% (p = 0.55); however, the total respiration Ra+s (autotrophs + soil) was reduced by only 2% and 15% in the ley and wheat agroecosystems, respectively. The strong positive correlation between soil respiration and temperature (r = 0.8, p = 0.25), moisture content (r = -0.7, p = 0.04), and electrical conductivity (r = 0.3, p = 0.47) confirmed the impact of soil physical properties on CO2 emissions from soil to the atmosphere. The CO2 sequestration potential of crops or gross primary production (GPP) also correlated with air temperature (r = 0.7), precipitation (r = -0.5) and leaf area index – LAI (r = 0.7). The amount of CO2 captured from the atmosphere was higher than that emitted during respiration in both the ley and wheat agroecosystems. The net ecosystem production (NEP) of 11.48 and 11.58 μmol m-2s-1 of the OF and CF ley was higher than the 8.93 and 9.42 μmol m-2s-1 of the OF and CF wheat, respectively. Given the Rs+a and CO2 sequestered in the biomass data, the difference between the carbon exchange for the OF and CF agroecosystems was insignificant. Therefore, the crop might be a more important CO2 sequestration factor than the farming type in planned rotation. Specifically, ley is preferred over winter wheat (irrespective of the farming system) for curbing the atmospheric C in biomass in terms of ecology. Nonetheless, the preference also depends on a farm’s practical purposes

    Seasonal carbon exchange in organic and conventional ley and winter wheat agroecosystems in central Lithuania

    No full text
    Due to the increase in anthropogenic CO2 emissions in the atmosphere, the choice of technologies for mitigating climate change is becoming an important challenge for the agricultural sector. The investigation of two farming types, i.e. organic (OF) and conventional (CF), and their environmental impact on the carbon budget in ley (grass-clover) (G) and winter wheat (W) agroecosystems was carried out in 2014 - 2015 at the Training Farm of the Aleksandras Stulginskis University. For the estimation of carbon exchange, the closed chamber method with a portable measurement system was used. Compared with CF, OF reduced the mean soil respiration by 12% (p = 0.31) and 13% (p = 0.55); however, the total respiration Ra+s (autotrophs + soil) was reduced by only 2% and 15% in the ley and wheat agroecosystems, respectively. The strong positive correlation between soil respiration and temperature (r = 0.8, p = 0.25), moisture content (r = -0.7, p = 0.04), and electrical conductivity (r = 0.3, p = 0.47) confirmed the impact of soil physical properties on CO2 emissions from soil to the atmosphere. The CO2 sequestration potential of crops or gross primary production (GPP) also correlated with air temperature (r = 0.7), precipitation (r = -0.5) and leaf area index – LAI (r = 0.7). The amount of CO2 captured from the atmosphere was higher than that emitted during respiration in both the ley and wheat agroecosystems. The net ecosystem production (NEP) of 11.48 and 11.58 μmol m-2s-1 of the OF and CF ley was higher than the 8.93 and 9.42 μmol m-2s-1 of the OF and CF wheat, respectively. Given the Rs+a and CO2 sequestered in the biomass data, the difference between the carbon exchange for the OF and CF agroecosystems was insignificant. Therefore, the crop might be a more important CO2 sequestration factor than the farming type in planned rotation. Specifically, ley is preferred over winter wheat (irrespective of the farming system) for curbing the atmospheric C in biomass in terms of ecology. Nonetheless, the preference also depends on a farm’s practical purposes

    Gaseous Stomatal Exchange and Relation to Ecosystem Functioning

    No full text
    The Stomatal pathway is a major pathway of exchange of trace gases between the atmosphere and ecosystems. Stomatal exchange is often described using the resistance analogue approach which relates the flux F s (in mol m-2 s-1) to the stomatal resistance (R s , s m-1) or conductance (g s , m s-1)Vytauto Didžiojo universitetasŽemės ūkio akademij
    corecore