42 research outputs found

    Virtual reality surgery simulation: A survey on patient specific solution

    Get PDF
    For surgeons, the precise anatomy structure and its dynamics are important in the surgery interaction, which is critical for generating the immersive experience in VR based surgical training applications. Presently, a normal therapeutic scheme might not be able to be straightforwardly applied to a specific patient, because the diagnostic results are based on averages, which result in a rough solution. Patient Specific Modeling (PSM), using patient-specific medical image data (e.g. CT, MRI, or Ultrasound), could deliver a computational anatomical model. It provides the potential for surgeons to practice the operation procedures for a particular patient, which will improve the accuracy of diagnosis and treatment, thus enhance the prophetic ability of VR simulation framework and raise the patient care. This paper presents a general review based on existing literature of patient specific surgical simulation on data acquisition, medical image segmentation, computational mesh generation, and soft tissue real time simulation

    Early Atomic Models - From Mechanical to Quantum (1904-1913)

    Get PDF
    A complete history of early atomic models would fill volumes, but a reasonably coherent tale of the path from mechanical atoms to the quantum can be told by focusing on the relevant work of three great contributors to atomic physics, in the critically important years between 1904 and 1913: J. J. Thomson, Ernest Rutherford and Niels Bohr. We first examine the origins of Thomson's mechanical atomic models, from his ethereal vortex atoms in the early 1880's, to the myriad "corpuscular" atoms he proposed following the discovery of the electron in 1897. Beyond predictions for the periodicity of the elements, the application of Thomson's atoms to problems in scattering and absorption led to quantitative predictions that were confirmed by experiments with high-velocity electrons traversing thin sheets of metal. Still, the much more massive and energetic {\alpha}-particles being studied by Rutherford were better suited for exploring the interior of the atom, and careful measurements on the angular dependence of their scattering eventually allowed him to infer the existence of an atomic nucleus. Niels Bohr was particularly troubled by the radiative instability inherent to any mechanical atom, and succeeded in 1913 where others had failed in the prediction of emission spectra, by making two bold hypotheses that were in contradiction to the laws of classical physics, but necessary in order to account for experimental facts.Comment: 58 Pages + References, 8 Figures. Accepted for publication in the European Physical Journal H (Historical Perspectives on Contemporary Physics). V2 - minor typos corrected and a footnote added to p.2

    Письмо Нагаоки Резерфорду от 22 февраля 1911 г.

    No full text

    Augmented Reality Animation for Pancreatic Surgery

    No full text

    Quantifying the ease of scientific discovery

    No full text
    It has long been known that scientific output proceeds on an exponential increase, or more properly, a logistic growth curve. The interplay between effort and discovery is clear, and the nature of the functional form has been thought to be due to many changes in the scientific process over time. Here I show a quantitative method for examining the ease of scientific progress, another necessary component in understanding scientific discovery. Using examples from three different scientific disciplines - mammalian species, chemical elements, and minor planets - I find the ease of discovery to conform to an exponential decay. In addition, I show how the pace of scientific discovery can be best understood as the outcome of both scientific output and ease of discovery. A quantitative study of the ease of scientific discovery in the aggregate, such as done here, has the potential to provide a great deal of insight into both the nature of future discoveries and the technical processes behind discoveries in science.Comment: 8 pages, 2 figures; version 2 contains substantial revisions; newest version has minor corrections and is the published versio

    The Scientific Method and Its Use

    No full text
    corecore