10,701 research outputs found

    Dynamic Approach to the Fully Frustrated XY Model

    Full text link
    Using Monte Carlo simulations, we systematically investigate the non-equilibrium dynamics of the chiral degree of freedom in the two-dimensional fully frustrated XY model. The critical initial increase of the staggered chiral magnetization is observed. By means of the short-time dynamics approach, we estimate the second order phase transition temperature TcT_{c} and all the dynamic and static critical exponents θ\theta, z, β\beta and ν\nu.Comment: 5 pages with 6 figures include

    Semi-leptonic B decays into higher charmed resonances

    Get PDF
    We apply HQET to semi-leptonic BB meson decays into a variety of excited charm states. Using three realistic meson models with fermionic light degrees of freedom, we examine the extent that the sum of exclusive single charmed states account for the inclusive semi-leptonic BB decay rate. The consistency of form factors with the Bjorken and Voloshin sum rules is also investigated.Comment: Latex, 27 pages. A few references and errors corrected, to appear in Phys. Rev.

    Static response of Fermi liquids with tensor interactions

    Full text link
    We use Landau's theory of a normal Fermi liquid to derive expressions for the static response of a system with a general tensor interaction that conserves the total spin and the total angular momentum of the quasiparticle-quasihole pair. The magnetic susceptibility is calculated in detail, with the inclusion of the center of mass tensor and cross vector terms in addition to the exchange tensor one. We also introduce a new parametrization of the tensor Landau parameters which significantly reduces the importance of high angular harmonic contributions. For nuclear matter and neutron matter we find that the two most important effects of the tensor interaction are to give a contribution from multipair states and to renormalize the magnetic moments. Response to a weak probe may be calculated using similar methods, replacing the magnetic moments with the matrix elements of the weak charges

    Current-voltage characteristics of the two-dimensional XY model with Monte Carlo dynamics

    Full text link
    Current-voltage characteristics and the linear resistance of the two-dimensional XY model with and without external uniform current driving are studied by Monte Carlo simulations. We apply the standard finite-size scaling analysis to get the dynamic critical exponent zz at various temperatures. From the comparison with the resistively-shunted junction dynamics, it is concluded that zz is universal in the sense that it does not depend on details of dynamics. This comparison also leads to the quantification of the time in the Monte Carlo dynamic simulation.Comment: 5 pages in two columns including 5 figures, to appear in PR

    Nonequilibrium Phase Transitions of Vortex Matter in Three-Dimensional Layered Superconductors

    Full text link
    Large-scale simulations on three-dimensional (3D) frustrated anisotropic XY model have been performed to study the nonequilibrium phase transitions of vortex matter in weak random pinning potential in layered superconductors. The first-order phase transition from the moving Bragg glass to the moving smectic is clarified, based on thermodynamic quantities. A washboard noise is observed in the moving Bragg glass in 3D simulations for the first time. It is found that the activation of the vortex loops play the dominant role in the dynamical melting at high drive.Comment: 3 pages,5 figure

    Dynamic Simulations of the Kosterlitz-Thouless Phase Transition

    Full text link
    Based on the short-time dynamic scaling form, a novel dynamic approach is proposed to tackle numerically the Kosterlitz-Thouless phase transition. Taking the two-dimensional XY model as an example, the exponential divergence of the spatial correlation length, the transition temperature TKTT_{KT} and all critical exponents are computed. Compared with Monte Carlo simulations in equilibrium, we obtain data at temperatures nearer to TKTT_{KT}.Comment: to appear in Phys. Rev. E in Rapid Communicatio

    Evaluation of candidate probiotic strains for gilthead sea bream larvae (Sparus aurata) using an in vivo approach

    Get PDF
    Aims: The aim of this study was to evaluate the effect of six bacterial strains on gilthead sea bream larvae (Sparus aurata). Methods and Results: Six bacterial strains isolated from well-performing live food cultures were identified by sequencing fragments of their 16s rDNA genome to the genus level as Cytophaga sp., Roseobacter sp., Ruergeria sp., Paracoccus sp., Aeromonas sp. and Shewanella sp. Survival rates of gilthead sea bream larvae transferred to seawater added these bacterial strains at concentrations of 6 +/- 0.3 x 10(5) bacteria ml(-1) were similar to those of larvae transferred to sterilized seawater and showed an average of 86% at 9 days after hatching, whereas, survival rates of larvae transferred to filtered seawater were lower (P < 0.05), and showed an average of 39%, 9 days after hatching. Conclusion: Several bacterial strains isolated from well-performing live food cultures showed a positive effect for sea bream larvae when compared with filtered seawater. Significance and Impact of the Study: The approach used in this study could be applied as an in vivo evaluation method of candidate probiotic strains used in the rearing of marine fish larvae

    From scalar to string confinement

    Full text link
    We outline a connection between scalar quark confinement, a phenomenologically successful concept heretofore lacking fundamental justification, and QCD. Although scalar confinement does not follow from QCD, there is an interesting and close relationship between them. We develop a simple model intermediate between scalar confinement and the QCD string for illustrative purposes. Finally, we find the bound state masses of scalar, time-component vector, and string confinement analytically through semi-classical quantization.Comment: ReVTeX, 9 pages, 5 figure

    The discrete energy method in numerical relativity: Towards long-term stability

    Full text link
    The energy method can be used to identify well-posed initial boundary value problems for quasi-linear, symmetric hyperbolic partial differential equations with maximally dissipative boundary conditions. A similar analysis of the discrete system can be used to construct stable finite difference equations for these problems at the linear level. In this paper we apply these techniques to some test problems commonly used in numerical relativity and observe that while we obtain convergent schemes, fast growing modes, or ``artificial instabilities,'' contaminate the solution. We find that these growing modes can partially arise from the lack of a Leibnitz rule for discrete derivatives and discuss ways to limit this spurious growth.Comment: 18 pages, 22 figure
    • …
    corecore