17,167 research outputs found

    Inducing spin-dependent tunneling to probe magnetic correlations in optical lattices

    Full text link
    We suggest a simple experimental method for probing antiferromagnetic spin correlations of two-component Fermi gases in optical lattices. The method relies on a spin selective Raman transition to excite atoms of one spin species to their first excited vibrational mode where the tunneling is large. The resulting difference in the tunneling dynamics of the two spin species can then be exploited, to reveal the spin correlations by measuring the number of doubly occupied lattice sites at a later time. We perform quantum Monte Carlo simulations of the spin system and solve the optical lattice dynamics numerically to show how the timed probe can be used to identify antiferromagnetic spin correlations in optical lattices.Comment: 5 pages, 5 figure

    Antiferromagnetic noise correlations in optical lattices

    Full text link
    We analyze how noise correlations probed by time-of-flight (TOF) experiments reveal antiferromagnetic (AF) correlations of fermionic atoms in two-dimensional (2D) and three-dimensional (3D) optical lattices. Combining analytical and quantum Monte Carlo (QMC) calculations using experimentally realistic parameters, we show that AF correlations can be detected for temperatures above and below the critical temperature for AF ordering. It is demonstrated that spin-resolved noise correlations yield important information about the spin ordering. Finally, we show how to extract the spin correlation length and the related critical exponent of the AF transition from the noise.Comment: 4 pages, 4 figure

    Self-consistency over the charge-density in dynamical mean-field theory: a linear muffin-tin implementation and some physical implications

    Full text link
    We present a simple implementation of the dynamical mean-field theory approach to the electronic structure of strongly correlated materials. This implementation achieves full self-consistency over the charge density, taking into account correlation-induced changes to the total charge density and effective Kohn-Sham Hamiltonian. A linear muffin-tin orbital basis-set is used, and the charge density is computed from moments of the many body momentum-distribution matrix. The calculation of the total energy is also considered, with a proper treatment of high-frequency tails of the Green's function and self-energy. The method is illustrated on two materials with well-localized 4f electrons, insulating cerium sesquioxide Ce2O3 and the gamma-phase of metallic cerium, using the Hubbard-I approximation to the dynamical mean-field self-energy. The momentum-integrated spectral function and momentum-resolved dispersion of the Hubbard bands are calculated, as well as the volume-dependence of the total energy. We show that full self-consistency over the charge density, taking into account its modification by strong correlations, can be important for the computation of both thermodynamical and spectral properties, particularly in the case of the oxide material.Comment: 20 pages, 6 figures (submitted in The Physical Review B

    Competing superconducting and magnetic order parameters and field-induced magnetism in electron doped Ba(Fe1x_{1-x}Cox_{x})2_{2}As2_{2}

    Get PDF
    We have studied the magnetic and superconducting properties of Ba(Fe0.95_{0.95}Co0.05_{0.05})2_{2}As2_{2} as a function of temperature and external magnetic field using neutron scattering and muon spin rotation. Below the superconducting transition temperature the magnetic and superconducting order parameters coexist and compete. A magnetic field can significantly enhance the magnetic scattering in the superconducting state, roughly doubling the Bragg intensity at 13.5 T. We perform a microscopic modelling of the data by use of a five-band Hamiltonian relevant to iron pnictides. In the superconducting state, vortices can slow down and freeze spin fluctuations locally. When such regions couple they result in a long-range ordered antiferromagnetic phase producing the enhanced magnetic elastic scattering in agreement with experiments.Comment: 9 pages, 6 figure

    Towards Precision Dermatology: Emerging Role of Proteomic Analysis of the Skin

    Get PDF
    Background: The skin is the largest organ in the human body and serves as a multilayered protective shield from the environment as well as a sensor and thermal regulator. However, despite its importance, many details about skin structure and function at the molecular level remain incompletely understood. Recent advances in liquid chromatography tandem mass spectrometry (LC-MS/MS) proteomics have enabled the quantification and characterization of the proteomes of a number of clinical samples, including normal and diseased skin. Summary: Here, we review the current state of the art in proteomic analysis of the skin. We provide a brief overview of the technique and skin sample collection methodologies as well as a number of recent examples to illustrate the utility of this strategy for advancing a broader understanding of the pathology of diseases as well as new therapeutic options. Key Messages: Proteomic studies of healthy skin and skin diseases can identify potential molecular biomarkers for improved diagnosis and patient stratification as well as potential targets for drug development. Collectively, efforts such as the Human Skinatlas offer improved opportunities for enhancing clinical practice and patient outcomes

    Assessing the Polarization of a Quantum Field from Stokes Fluctuation

    Get PDF
    We propose an operational degree of polarization in terms of the variance of the projected Stokes vector minimized over all the directions of the Poincar\'e sphere. We examine the properties of this degree and show that some problems associated with the standard definition are avoided. The new degree of polarization is experimentally determined using two examples: a bright squeezed state and a quadrature squeezed vacuum.Comment: 4 pages, 2 figures. Comments welcome

    Coherent Quantum-Noise Cancellation for Optomechanical Sensors

    Full text link
    Using a flowchart representation of quantum optomechanical dynamics, we design coherent quantum-noise-cancellation schemes that can eliminate the back-action noise induced by radiation pressure at all frequencies and thus overcome the standard quantum limit of force sensing. The proposed schemes can be regarded as novel examples of coherent feedforward quantum control.Comment: 4 pages, 5 figures, v2: accepted by Physical Review Letter

    Quantum reconstruction of an intense polarization squeezed optical state

    Get PDF
    We perform a reconstruction of the polarization sector of the density matrix of an intense polarization squeezed beam starting from a complete set of Stokes measurements. By using an appropriate quasidistribution, we map this onto the Poincare space providing a full quantum mechanical characterization of the measured polarization state.Comment: 4 pages, 4 eps color figure

    Cavity quantum electro-optics

    Full text link
    The quantum dynamics of the coupling between a cavity optical field and a resonator microwave field via the electro-optic effect is studied. This coupling has the same form as the opto-mechanical coupling via radiation pressure, so all previously considered opto-mechanical effects can in principle be observed in electro-optic systems as well. In particular, I point out the possibilities of laser cooling of the microwave mode, entanglement between the optical mode and the microwave mode via electro-optic parametric amplification, and back-action-evading optical measurements of a microwave quadrature.Comment: 6 pages, 3 figures; v2: updated and submitted, v3: extended, accepted by Physical Review
    corecore