4,161 research outputs found
A mathematical model for jet engine combustor pollutant emissions
Mathematical modeling for the description of the origin and disposition of combustion-generated pollutants in gas turbines is presented. A unified model in modular form is proposed which includes kinetics, recirculation, turbulent mixing, multiphase flow effects, swirl and secondary air injection. Subelements of the overall model were applied to data relevant to laboratory reactors and practical combustor configurations. Comparisons between the theory and available data show excellent agreement for basic CO/H2/Air chemical systems. For hydrocarbons the trends are predicted well including higher-than-equilibrium NO levels within the fuel rich regime. Although the need for improved accuracy in fuel rich combustion is indicated, comparisons with actual jet engine data in terms of the effect of combustor-inlet temperature is excellent. In addition, excellent agreement with data is obtained regarding reduced NO emissions with water droplet and steam injection
The Combinatorial World (of Auctions) According to GARP
Revealed preference techniques are used to test whether a data set is
compatible with rational behaviour. They are also incorporated as constraints
in mechanism design to encourage truthful behaviour in applications such as
combinatorial auctions. In the auction setting, we present an efficient
combinatorial algorithm to find a virtual valuation function with the optimal
(additive) rationality guarantee. Moreover, we show that there exists such a
valuation function that both is individually rational and is minimum (that is,
it is component-wise dominated by any other individually rational, virtual
valuation function that approximately fits the data). Similarly, given upper
bound constraints on the valuation function, we show how to fit the maximum
virtual valuation function with the optimal additive rationality guarantee. In
practice, revealed preference bidding constraints are very demanding. We
explain how approximate rationality can be used to create relaxed revealed
preference constraints in an auction. We then show how combinatorial methods
can be used to implement these relaxed constraints. Worst/best-case welfare
guarantees that result from the use of such mechanisms can be quantified via
the minimum/maximum virtual valuation function
Correlations between zeros of a random polynomial
We obtain exact analytical expressions for correlations between real zeros of
the Kac random polynomial. We show that the zeros in the interval are
asymptotically independent of the zeros outside of this interval, and that the
straightened zeros have the same limit translation invariant correlations. Then
we calculate the correlations between the straightened zeros of the SO(2)
random polynomial.Comment: 31 pages, 2 figures; a revised version of the J. Stat. Phys. pape
Supersymmetric Vacua in Random Supergravity
We determine the spectrum of scalar masses in a supersymmetric vacuum of a
general N=1 supergravity theory, with the Kahler potential and superpotential
taken to be random functions of N complex scalar fields. We derive a random
matrix model for the Hessian matrix and compute the eigenvalue spectrum.
Tachyons consistent with the Breitenlohner-Freedman bound are generically
present, and although these tachyons cannot destabilize the supersymmetric
vacuum, they do influence the likelihood of the existence of an `uplift' to a
metastable vacuum with positive cosmological constant. We show that the
probability that a supersymmetric AdS vacuum has no tachyons is formally
equivalent to the probability of a large fluctuation of the smallest eigenvalue
of a certain real Wishart matrix. For normally-distributed matrix entries and
any N, this probability is given exactly by P = exp(-2N^2|W|^2/m_{susy}^2),
with W denoting the superpotential and m_{susy} the supersymmetric mass scale;
for more general distributions of the entries, our result is accurate when N >>
1. We conclude that for |W| \gtrsim m_{susy}/N, tachyonic instabilities are
ubiquitous in configurations obtained by uplifting supersymmetric vacua.Comment: 26 pages, 6 figure
Random matrix ensembles with an effective extensive external charge
Recent theoretical studies of chaotic scattering have encounted ensembles of
random matrices in which the eigenvalue probability density function contains a
one-body factor with an exponent proportional to the number of eigenvalues. Two
such ensembles have been encounted: an ensemble of unitary matrices specified
by the so-called Poisson kernel, and the Laguerre ensemble of positive definite
matrices. Here we consider various properties of these ensembles. Jack
polynomial theory is used to prove a reproducing property of the Poisson
kernel, and a certain unimodular mapping is used to demonstrate that the
variance of a linear statistic is the same as in the Dyson circular ensemble.
For the Laguerre ensemble, the scaled global density is calculated exactly for
all even values of the parameter , while for (random
matrices with unitary symmetry), the neighbourhood of the smallest eigenvalue
is shown to be in the soft edge universality class.Comment: LaTeX209, 17 page
Schubert Polynomials for the affine Grassmannian of the symplectic group
We study the Schubert calculus of the affine Grassmannian Gr of the
symplectic group. The integral homology and cohomology rings of Gr are
identified with dual Hopf algebras of symmetric functions, defined in terms of
Schur's P and Q-functions. An explicit combinatorial description is obtained
for the Schubert basis of the cohomology of Gr, and this is extended to a
definition of the affine type C Stanley symmetric functions. A homology Pieri
rule is also given for the product of a special Schubert class with an
arbitrary one.Comment: 45 page
Phase diagram of bismuth in the extreme quantum limit
Elemental bismuth provides a rare opportunity to explore the fate of a
three-dimensional gas of highly mobile electrons confined to their lowest
Landau level. Coulomb interaction, neglected in the band picture, is expected
to become significant in this extreme quantum limit with poorly understood
consequences. Here, we present a study of the angular-dependent Nernst effect
in bismuth, which establishes the existence of ultraquantum field scales on top
of its complex single-particle spectrum. Each time a Landau level crosses the
Fermi level, the Nernst response sharply peaks. All such peaks are resolved by
the experiment and their complex angular-dependence is in very good agreement
with the theory. Beyond the quantum limit, we resolve additional Nernst peaks
signaling a cascade of additional Landau sub-levels caused by electron
interaction
Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process
Consider the zero set of the random power series f(z)=sum a_n z^n with i.i.d.
complex Gaussian coefficients a_n. We show that these zeros form a
determinantal process: more precisely, their joint intensity can be written as
a minor of the Bergman kernel. We show that the number of zeros of f in a disk
of radius r about the origin has the same distribution as the sum of
independent {0,1}-valued random variables X_k, where P(X_k=1)=r^{2k}. Moreover,
the set of absolute values of the zeros of f has the same distribution as the
set {U_k^{1/2k}} where the U_k are i.i.d. random variables uniform in [0,1].
The repulsion between zeros can be studied via a dynamic version where the
coefficients perform Brownian motion; we show that this dynamics is conformally
invariant.Comment: 37 pages, 2 figures, updated proof
Quantum Chaotic Dynamics and Random Polynomials
We investigate the distribution of roots of polynomials of high degree with
random coefficients which, among others, appear naturally in the context of
"quantum chaotic dynamics". It is shown that under quite general conditions
their roots tend to concentrate near the unit circle in the complex plane. In
order to further increase this tendency, we study in detail the particular case
of self-inversive random polynomials and show that for them a finite portion of
all roots lies exactly on the unit circle. Correlation functions of these roots
are also computed analytically, and compared to the correlations of eigenvalues
of random matrices. The problem of ergodicity of chaotic wave-functions is also
considered. For that purpose we introduce a family of random polynomials whose
roots spread uniformly over phase space. While these results are consistent
with random matrix theory predictions, they provide a new and different insight
into the problem of quantum ergodicity. Special attention is devoted all over
the paper to the role of symmetries in the distribution of roots of random
polynomials.Comment: 33 pages, Latex, 6 Figures not included (a copy of them can be
requested at [email protected]); to appear in Journal of Statistical
Physic
Asymptotic Level Spacing of the Laguerre Ensemble: A Coulomb Fluid Approach
We determine the asymptotic level spacing distribution for the Laguerre
Ensemble in a single scaled interval, , containing no levels,
E_{\bt}(0,s), via Dyson's Coulomb Fluid approach. For the
Unitary-Laguerre Ensemble, we recover the exact spacing distribution found by
both Edelman and Forrester, while for , the leading terms of
, found by Tracy and Widom, are reproduced without the use of the
Bessel kernel and the associated Painlev\'e transcendent. In the same
approximation, the next leading term, due to a ``finite temperature''
perturbation (\bt\neq 2), is found.Comment: 10pp, LaTe
- …
