161 research outputs found

    An SU(2) Analog of the Azbel--Hofstadter Hamiltonian

    Full text link
    Motivated by recent findings due to Wiegmann and Zabrodin, Faddeev and Kashaev concerning the appearence of the quantum U_q(sl(2)) symmetry in the problem of a Bloch electron on a two-dimensional magnetic lattice, we introduce a modification of the tight binding Azbel--Hofstadter Hamiltonian that is a specific spin-S Euler top and can be considered as its ``classical'' analog. The eigenvalue problem for the proposed model, in the coherent state representation, is described by the S-gap Lam\'e equation and, thus, is completely solvable. We observe a striking similarity between the shapes of the spectra of the two models for various values of the spin S.Comment: 19 pages, LaTeX, 4 PostScript figures. Relation between Cartan and Cartesian deformation of SU(2) and numerical results added. Final version as will appear in J. Phys. A: Math. Ge

    Topology at the Planck Length

    Get PDF
    A basic arbitrariness in the determination of the topology of a manifold at the Planck length is discussed. An explicit example is given of a `smooth' change in topology from the 2-sphere to the 2-torus through a sequence of noncommuting geometries. Applications are considered to the theory of D-branes within the context of the proposed MM(atrix) theory.Comment: Orsay Preprint 97/34, 17 pages, Late

    Nambu Quantum Mechanics on Discrete 3-Tori

    Full text link
    We propose a quantization of linear, volume preserving, maps on the discrete and finite 3-torus T_N^3 represented by elements of the group SL(3,Z_N). These flows can be considered as special motions of the Nambu dynamics (linear Nambu flows) in the three dimensional toroidal phase space and are characterized by invariant vectors, a, of T_N^3. We quantize all such flows which are necessarily restricted on a planar two-dimensional phase space, embedded in the 3-torus, transverse to the vector a . The corresponding maps belong to the little group of the vector a in SL(3,Z_N) which is an SL(2,Z_N) subgroup. The associated linear Nambu maps are generated by a pair of linear and quadratic Hamiltonians (Clebsch-Monge potentials of the flow) and the corresponding quantum maps, realize the metaplectic representation of SL(3,Z_N) on the discrete group of three dimensional magnetic translations i.e. the non-commutative 3-torus with deformation parameter the N-th root of unity. Other potential applications of our construction are related to the quantization of deterministic chaos in turbulent maps as well as to quantum tomography of three dimensional objects.Comment: 13 pages, LaTeX2

    Holomorphic Quantization on the Torus and Finite Quantum Mechanics

    Get PDF
    We construct explicitly the quantization of classical linear maps of SL(2,R)SL(2, R) on toroidal phase space, of arbitrary modulus, using the holomorphic (chiral) version of the metaplectic representation. We show that Finite Quantum Mechanics (FQM) on tori of arbitrary integer discretization, is a consistent restriction of the holomorphic quantization of SL(2,Z)SL(2, Z) to the subgroup SL(2,Z)/ΓlSL(2, Z)/\Gamma_l, Γl\Gamma_l being the principal congruent subgroup mod l, on a finite dimensional Hilbert space. The generators of the ``rotation group'' mod l, Ol(2)SL(2,l)O_{l}(2)\subset SL(2,l), for arbitrary values of l are determined as well as their quantum mechanical eigenvalues and eigenstates.Comment: 12 pages LaTeX (needs amssymb.sty). Version as will appear in J. Phys.

    Strange Attractors in Dissipative Nambu Mechanics : Classical and Quantum Aspects

    Full text link
    We extend the framework of Nambu-Hamiltonian Mechanics to include dissipation in R3R^{3} phase space. We demonstrate that it accommodates the phase space dynamics of low dimensional dissipative systems such as the much studied Lorenz and R\"{o}ssler Strange attractors, as well as the more recent constructions of Chen and Leipnik-Newton. The rotational, volume preserving part of the flow preserves in time a family of two intersecting surfaces, the so called {\em Nambu Hamiltonians}. They foliate the entire phase space and are, in turn, deformed in time by Dissipation which represents their irrotational part of the flow. It is given by the gradient of a scalar function and is responsible for the emergence of the Strange Attractors. Based on our recent work on Quantum Nambu Mechanics, we provide an explicit quantization of the Lorenz attractor through the introduction of Non-commutative phase space coordinates as Hermitian N×N N \times N matrices in R3 R^{3}. They satisfy the commutation relations induced by one of the two Nambu Hamiltonians, the second one generating a unique time evolution. Dissipation is incorporated quantum mechanically in a self-consistent way having the correct classical limit without the introduction of external degrees of freedom. Due to its volume phase space contraction it violates the quantum commutation relations. We demonstrate that the Heisenberg-Nambu evolution equations for the Quantum Lorenz system give rise to an attracting ellipsoid in the 3N23 N^{2} dimensional phase space.Comment: 35 pages, 4 figures, LaTe

    Analytic Representation of Finite Quantum Systems

    Full text link
    A transform between functions in R and functions in Zd is used to define the analogue of number and coherent states in the context of finite d-dimensional quantum systems. The coherent states are used to define an analytic representation in terms of theta functions. All states are represented by entire functions with growth of order 2, which have exactly d zeros in each cell. The analytic function of a state is constructed from its zeros. Results about the completeness of finite sets of coherent states within a cell are derived

    Phase Effect of A General Two-Higgs-Doublet Model in bsγb\to s\gamma

    Full text link
    In a general two-Higgs-doublet model (2HDM), without the {\it ad hoc} discrete symmetries to prevent tree-level flavor-changing-neutral currents, an extra phase angle in the charged-Higgs-fermion coupling is allowed. We show that the charged-Higgs amplitude interferes destructively or constructively with the standard model amplitude depending crucially on this phase angle. The popular model I and II are special cases of our analysis. As a result of this phase angle the severe constraint on the charged-Higgs boson mass imposed by the inclusive rate of bsγb\to s\gamma from CLEO can be relaxed. We also examine the effects of this phase angle on the neutron electric dipole moment. Furthermore, we also discuss other constraints on the charged-Higgs-fermion couplings coming from measurements of B0B0ˉB^0-\bar{B^0} mixing, ρ0\rho_0, and RbR_b.Comment: LaTeX 17 pages, 3 figure

    New Physics in CP Asymmetries and Rare B Decays

    Get PDF
    We review and update the effects of physics beyond the standard model on CP asymmetries in B decays. These asymmetries can be significantly altered if there are important new-physics contributions to \bqbqbar mixing. This same new physics will therefore also contribute to rare, flavor-changing B decays. Through a study of such decays, we show that it is possible to partially distinguish the different models of new physics.Comment: 42 pages, plain TeX (macros included), 1 figure (included). A few sentences added, references updated. Present manuscript is now identical to the version accepted for publication in Phys. Rev.

    Probing the charged Higgs boson at the LHC in the CP-violating type-II 2HDM

    Get PDF
    We present a phenomenological study of a CP-violating two-Higgs-doublet Model with type-II Yukawa couplings at the Large Hadron Collider (LHC). In the light of recent LHC data, we focus on the parameter space that survives the current and past experimental constraints as well as theoretical bounds on the model. Once the phenomenological scenario is set, we analyse the scope of the LHC in exploring this model through the discovery of a charged Higgs boson produced in association with a W boson, with the former decaying into the lightest neutral Higgs and a second W state, altogether yielding a b\bar b W^+W^- signature, of which we exploit the W^+W^- semileptonic decays.Comment: 37 pages, 16 figures; v2 updated treatment of LHC constraint
    corecore