520 research outputs found

    The Multi-Configurational Hartree-Fock close-coupling ansatz: application to Argon photoionization cross section and delays

    Full text link
    We present a robust, ab initio method for addressing atom-light interactions and apply it to photoionization of argon. We use a close-coupling ansatz constructed on a multi-configurational Hartree-Fock description of localized states and B-spline expansions of the electron radial wave functions. In this implementation, the general many-electron problem can be tackled thanks to the use of the ATSP2K libraries [CPC 176 (2007) 559]. In the present contribution, we combine this method with exterior complex scaling, thereby allowing for the computation of the complex partial amplitudes that encode the whole dynamics of the photoionization process. The method is validated on the 3s3p6np series of resonances converging to the 3s extraction. Then, it is used for computing the energy dependent differential atomic delay between 3p and 3s photoemission, and agreement is found with the measurements of Gu\'enot et al. [PRA 85 (2012) 053424]. The effect of the presence of resonances in the one-photon spectrum on photoionization delay measurements is studied.Comment: 15 pages, 8 figures, 4 table

    Integration of satellites into GSM: signaling flow analysis

    Get PDF

    Frame design for 5G multicarrier modulations

    Get PDF

    Multi-polariton control in attosecond transient absorption of autoionizing states

    Full text link
    Tunable attosecond transient absorption spectroscopy is an ideal tool for studying and manipulating autoionization dynamics in the continuum. We investigate near-resonant two-photon couplings between the bright 3s^-1 4p and dark 3s^-1 4f autoionizing states of argon that lead to Autler-Townes like interactions, forming entangled light-matter states, or polaritons. We observe that one-photon couplings with intermediate dark states play an important role in this interaction, leading to the formation of multiple polaritonic branches whose energies exhibit avoided crossings as a function of the dressing-laser frequency. Our experimental measurements and theoretical essential-state simulations show good agreement and reveal how the delay, frequency, and intensity of the dressing pulse govern the properties of autoionizing polariton multiplets. These results demonstrate new pathways for quantum control of autoionizing states with optical fields.Comment: 8 pages, 6 figure
    • 

    corecore