334 research outputs found

    Liquid-liquid transition in supercooled silicon determined by first-principles simulation

    Full text link
    First principles molecular dynamics simulations reveal a liquid-liquid phase transition in supercooled elemental silicon. Two phases coexist below Tc≈1232KT_c\approx 1232K. The low density phase is nearly tetra-coordinated, with a pseudogap at the Fermi surface, while the high density phase is more highly coordinated and metallic in nature. The transition is observed through the formation of van der Waals loops in pressure-volume isotherms below TcT_c.Comment: 9 pages 4 figure

    Annihilation radiation in cosmic gamma-ray bursts

    Get PDF
    The pair annihilation radiation in gamma-ray bursts is seen as broad lines with extended hard wings. This radiation is suggested to escape in a collimated beam from magnetic polar regions of neutron stars

    Tricritical Phenomena at the Cerium γ→α\gamma \to \alpha Transition

    Full text link
    The γ→α\gamma \to \alpha isostructural transition in the Ce0.9−x_{0.9-x}Lax_xTh0.1_{0.1} system is measured as a function of La alloying using specific heat, magnetic susceptibility, resistivity, thermal expansivity/striction measurements. A line of discontinuous transitions, as indicated by the change in volume, decreases exponentially from 118 K to close to zero with increasing La doping and the transition changes from being first-order to continuous at a critical concentration 0.10≤xc≤0.140.10 \leq x_c \leq 0.14. At the tricritical point, the coefficient of the linear TT term in the specific heat γ\gamma and the magnetic susceptibility start to increase rapidly near xx = 0.14 and gradually approaches large values at xx=0.35 signifying that a heavy Fermi-liquid state evolves at large doping. Near xcx_c, the Wilson ratio, RWR_W, has a value of 3.0, signifying the presence of magnetic fluctuations. Also, the low-temperature resistivity shows that the character of the low-temperature Fermi-liquid is changing

    The second Konus-Wind catalog of short gamma-ray bursts

    Full text link
    In this catalog, we present the results of a systematic study of 295 short gamma-ray bursts (GRBs) detected by Konus-Wind (KW) from 1994 to 2010. From the temporal and spectral analyses of the sample, we provide the burst durations, the spectral lags, the results of spectral fits with three model functions, the total energy fluences and the peak energy fluxes of the bursts. We discuss evidence found for an additional power-law spectral component and the presence of extended emission in a fraction of the KW short GRBs. Finally, we consider the results obtained in the context of the Type I (merger-origin) / Type II (collapsar-origin) classifications.Comment: Accepted to the Astrophysical Journal Supplement Series (7 Figures, 8 Tables

    Gaussian excitations model for glass-former dynamics and thermodynamics

    Full text link
    We describe a model for the thermodynamics and dynamics of glass-forming liquids in terms of excitations from an ideal glass state to a Gaussian manifold of configurationally excited states. The quantitative fit of this three parameter model to the experimental data on excess entropy and heat capacity shows that ``fragile'' behavior, indicated by a sharply rising excess heat capacity as the glass transition is approached from above, occurs in anticipation of a first-order transition -- usually hidden below the glass transition -- to a ``strong'' liquid state of low excess entropy. The dynamic model relates relaxation to a hierarchical sequence of excitation events each involving the probability of accumulating sufficient kinetic energy on a separate excitable unit. Super-Arrhenius behavior of the relaxation rates, and the known correlation of kinetic with thermodynamic fragility, both follow from the way the rugged landscape induces fluctuations in the partitioning of energy between vibrational and configurational manifolds. A relation is derived in which the configurational heat capacity, rather than the configurational entropy of the Adam Gibbs equation, controls the temperature dependence of the relaxation times, and this gives a comparable account of the experimental observations.Comment: 21 pp., 17 fig

    Unusual Burst Emission from the New Soft Gamma Repeater SGR1627-41

    Get PDF
    In June-July,1998 the Konus-Wind burst spectrometer observed a series of bursts from the new soft gamma repeater SGR1627-41. Time histories and energy spectra of the bursts have been studied, revealing fluences and peak fluxes in the ranges of 3x10^{-7} - 7.5x10^{-6} erg cm^{-2} and 10^{-5} - 10^{-4}erg cm^{-2}/s respectively. One event, 18 June 6153.5sUT stands out dramatically from this series. Its fluence is ~7x10^{-4} erg cm^{-2} and peak flux ~2x10^{-2} erg cm^{-2}/s. These values from a source at a distance of 5.8 kpc yield an energy output of ~3x10^{42}erg and maximum luminosity of ~8x10^{43} erg/s, similar to the values for the famous March 5, 1979 and August27,1998 events. In terms of energy, this event is another giant outburst seen in a third SGR! However, this very energetic burst differs significantly from the other giant outbursts. It exhibits no separate initial pulse with a fast rise time, no extended tail, and no pulsations. It is rather similar to ordinary repeated bursts but is a few hundred times stronger in intensity. According to the magnetar model by Thompson and Duncan (1995) such a burst may be initiated by a strong starquake when a crust fracture propagates over the whole surface of a neutron star.Comment: 7 pages, 5 figures. To be appeared in ApJ
    • …
    corecore