81,629 research outputs found

    Negative Linear Compressibility

    Full text link
    While all materials reduce their intrinsic volume under hydrostatic (uniform) compression, a select few actually \emph{expand} along one or more directions during this process of densification. As rare as it is counterintuitive, such "negative compressibility" behaviour has application in the design of pressure sensors, artificial muscles and actuators. The recent discovery of surprisingly strong and persistent negative compressibility effects in a variety of new families of materials has ignited the field. Here we review the phenomenology of negative compressibility in this context of materials diversity, placing particular emphasis on the common structural motifs that recur amongst known examples. Our goal is to present a mechanistic understanding of negative compressibility that will help inform a clear strategy for future materials design.Comment: Submitted to PCC

    A Functional Architecture Approach to Neural Systems

    Get PDF
    The technology for the design of systems to perform extremely complex combinations of real-time functionality has developed over a long period. This technology is based on the use of a hardware architecture with a physical separation into memory and processing, and a software architecture which divides functionality into a disciplined hierarchy of software components which exchange unambiguous information. This technology experiences difficulty in design of systems to perform parallel processing, and extreme difficulty in design of systems which can heuristically change their own functionality. These limitations derive from the approach to information exchange between functional components. A design approach in which functional components can exchange ambiguous information leads to systems with the recommendation architecture which are less subject to these limitations. Biological brains have been constrained by natural pressures to adopt functional architectures with this different information exchange approach. Neural networks have not made a complete shift to use of ambiguous information, and do not address adequate management of context for ambiguous information exchange between modules. As a result such networks cannot be scaled to complex functionality. Simulations of systems with the recommendation architecture demonstrate the capability to heuristically organize to perform complex functionality

    A physiologically based approach to consciousness

    Get PDF
    The nature of a scientific theory of consciousness is defined by comparison with scientific theories in the physical sciences. The differences between physical, algorithmic and functional complexity are highlighted, and the architecture of a functionally complex electronic system created to relate system operations to device operations is compared with a scientific theory. It is argued that there are two qualitatively different types of functional architecture, and that electronic systems have the instruction architecture based on exchange of unambiguous information between functional components, and biological brains have been constrained by natural selection pressures into the recommendation architecture based on exchange of ambiguous information. The mechanisms by which a recommendation architecture could heuristically define its own functionality are described, and compared with memory in biological brains. Dream sleep is interpreted as the mechanism for minimizing information exchange between functional components in a heuristically defined functional system. The functional role of consciousness of self is discussed, and the route by which the experience of that function described at the psychological level can be related to physiology through a functional architecture is outlined

    Fractional Quantum Hall Physics in Jaynes-Cummings-Hubbard Lattices

    Get PDF
    Jaynes-Cummings-Hubbard arrays provide unique opportunities for quantum emulation as they exhibit convenient state preparation and measurement, and in-situ tuning of parameters. We show how to realise strongly correlated states of light in Jaynes-Cummings-Hubbard arrays under the introduction of an effective magnetic field. The effective field is realised by dynamic tuning of the cavity resonances. We demonstrate the existence of Fractional Quantum Hall states by com- puting topological invariants, phase transitions between topologically distinct states, and Laughlin wavefunction overlap.Comment: 5 pages, 3 figure

    Issues of Medical Ethics in the Catechism of the Catholic Church

    Get PDF

    Stepping in New Directions: The Canadian Army’s Observer Program in the Asia-Pacific Region, 1944-45

    Get PDF
    In early 1944, and in anticipation of a government decision to commit ground forces to the war against Japan, the Canadian army launched a program that sent officers to the Asia-Pacific region to observe Allied operations. The observer program was well underway when, in November 1944, the Canadian government ordered the army to prepare a division to serve under American command in the Pacific theatre. The observer program helped the army deal with two significant challenges: learning how to fight a largely unfamiliar enemy in a tropical environment, and learning how to operate as part of an American force
    • …
    corecore