195 research outputs found

    Infrared Exponents and the Running Coupling of Landau gauge QCD and their Relation to Confinement

    Get PDF
    The infrared behaviour of the gluon and ghost propagators in Landau gauge QCD is reviewed. The Kugo-Ojima confinement criterion and the Gribov-Zwanziger horizon condition result from quite general properties of the ghost Dyson-Schwinger equation. The numerical solutions for the gluon and ghost propagators obtained from a truncated set of Dyson-Schwinger equations provide an explicit example for the anticipated infrared behaviour. The results are in good agreement with corresponding lattice data obtained recently. The resulting running coupling approaches a fix point in the infrared, α(0)=8.92/Nc\alpha(0) = 8.92/N_c. Two different fits for the scale dependence of the running coupling are given and discussed.Comment: 3 pages, 3 figures; talk given by R.A. at the conference Quark Nuclear Physics 200

    Nucleon Properties in the Covariant Quark-Diquark Model

    Get PDF
    In the covariant quark-diquark model the effective Bethe-Salpeter (BS) equations for the nucleon and the Δ\Delta are solved including scalar {\em and axialvector} diquark correlations. Their quark substructure is effectively taken into account in both, the interaction kernel of the BS equations and the currents employed to calculate nucleon observables. Electromagnetic current conservation is maintained. The electric form factors of proton and neutron match the data. Their magnetic moments improve considerably by including axialvector diquarks and photon induced scalar-axialvector transitions. The isoscalar magnetic moment can be reproduced, the isovector contribution is about 15% too small. The ratio μGE/GM\mu G_E/G_M and the axial and strong couplings gAg_A, gπNNg_{\pi NN}, provide an upper bound on the relative importance of axialvector diquarks confirming that scalar diquarks nevertheless describe the dominant 2-quark correlations inside nucleons.Comment: 13 pages, EPJ styl

    The Infrared Behaviour of the Running Coupling in Landau Gauge QCD

    Full text link
    Approximate solutions for the gluon and ghost propagators as well as the running coupling in Landau gauge Yang-Mills theories are presented. These propagators obtained from the corresponding Dyson-Schwinger equations are in remarkable agreement with those of recent lattice calculations. The resulting running coupling possesses an infrared fixed point, αS(0)=8.92/Nc\alpha_S(0) = 8.92/N_c for all gauge groups SU(NcN_c). Above one GeV the running coupling rapidly approaches its perturbative form.Comment: 8 pages, 3 figures, uses ActaStyle.cls, Invited talk given by R.A. at the conference RENORMALIZATION GROUP 2002, March 10 - 16, 2002, Strba, Slovaki

    Kugo-Ojima confinement and QCD Green's functions in covariant gauges

    Get PDF
    In Landau gauge QCD the Kugo-Ojima confinement criterion and its relation to the infrared behaviour of the gluon and ghost propagators are reviewed. It is demonstrated that the realization of this confinement criterion (which is closely related to the Gribov-Zwanziger horizon condition) results from quite general properties of the ghost Dyson-Schwinger equation. The numerical solutions for the gluon and ghost propagators obtained from a truncated set of Dyson--Schwinger equations provide an explicit example for the anticipated infrared behaviour. The results are in good agreement, also quantitatively, with corresponding lattice data obtained recently. The resulting running coupling approaches a fixed point in the infrared, α(0)=8.915/Nc\alpha(0) = 8.915/N_c. Solutions for the coupled system of Dyson--Schwinger equations for the quark, gluon and ghost propagators are presented. Dynamical generation of quark masses and thus spontaneous breaking of chiral symmetry takes place. In the quenched approximation the quark propagator functions agree well with those of corresponding lattice calculations. For a small number of light flavours the quark, gluon and ghost propagators deviate only slightly from the ones in quenched approximation. While the positivity violation of the gluon spectral function is manifest in the gluon propagator, there are no clear indications of analogous positivity violations for quarks so far.Comment: 10 pages, 5 figures; Talk given by R.A. at the International School on Nuclear Physics ``Quarks in Hadrons and Nuclei'' in Erice (Italy), September 16 - 24, 200

    Three-point vertex functions in Yang-Mills Theory and QCD in Landau gauge

    Full text link
    Solutions for the three-gluon and quark-gluon vertices from Dyson-Schwinger equations and the three-particle irreducible formalism are discussed. Dynamical quarks (``unquenching'') change the three-gluon vertex via the quark-triangle diagrams which themselves include fully dressed quark-gluon vertex functions. On the other hand, the quark-swordfish diagram is, at least with the model used for the two-quark-two-gluon vertex employed here, of minor importance. For the leading tensor structure of the three-gluon vertex the "unquenching" effect can be summarized for the nonperturbative part as a shift of the related dressing function towards the infrared.Comment: Talk given by Adrian L. Blum at XIIth Quark Confinement and the Hadron Spectrum, August 28 - September 04, 2016, Thessaloniki, Greec

    Two infrared Yang-Mills solutions in stochastic quantization and in an effective action formalism

    Get PDF
    Three decades of work on the quantum field equations of pure Yang-Mills theory have distilled two families of solutions in Landau gauge. Both coincide for high (Euclidean) momentum with known perturbation theory, and both predict an infrared suppressed transverse gluon propagator, but whereas the solution known as "scaling" features an infrared power law for the gluon and ghost propagators, the "massive" solution rather describes the gluon as a vector boson that features a finite Debye screening mass. In this work we examine the gauge dependence of these solutions by adopting stochastic quantization. What we find, in four dimensions and in a rainbow approximation, is that stochastic quantization supports both solutions in Landau gauge but the scaling solution abruptly disappears when the parameter controlling the drift force is separated from zero (soft gauge-fixing), recovering only the perturbative propagators; the massive solution seems to survive the extension outside Landau gauge. These results are consistent with the scaling solution being related to the existence of a Gribov horizon, with the massive one being more general. We also examine the effective action in Faddeev-Popov quantization that generates the rainbow and we find, for a bare vertex approximation, that the the massive-type solutions minimise the quantum effective action.Comment: 13 pages, 7 figures. Change of title to reflect version accepted for publicatio

    Kugo-Ojima confinement criterion, Zwanziger-Gribov horizon condition, and infrared critical exponents in Landau gauge QCD

    Get PDF
    The Kugo-Ojima confinement criterion and its relation to the infrared behaviour of the gluon and ghost propagators in Landau gauge QCD are reviewed. The realization of this confinement criterion (which in Landau gauge relates to Zwanziger's horizon condition) results from quite general properties of the ghost Dyson-Schwinger equation. The numerical solutions for the gluon and ghost propagators obtained from a truncated set of Dyson-Schwinger equations provide an explicit example for the anticipated infrared behaviour. These results are in good agreement, also quantitatively, with corresponding lattice data obtained recently. The resulting running coupling approaches a fixed point in the infrared, α(0)=8.9/Nc\alpha(0) = 8.9/N_c. Solutions for the coupled system of Dyson-Schwinger equations for the quark, gluon and ghost propagators are presented. Dynamical generation of quark masses and thus spontaneous breaking of chiral symmetry is found. In the quenched approximation the quark propagator functions agree well with those of corresponding lattice calculations. For a small number of light flavours the quark, gluon and ghost propagators deviate only slightly from the quenched ones. While the positivity violation of the gluon spectral function is apparent in the gluon propagator, there are no clear indications of positivity violations in the Landau gauge quark propagator.Comment: 10 pages, 4 figures; invited talk presented by R. Alkofer at the International Conference Confinement V Gargnano, Italy, September 10-14, 200

    Infrared Behavior of Three-Point Functions in Landau Gauge Yang-Mills Theory

    Full text link
    Analytic solutions for the three-gluon and ghost-gluon vertices in Landau gauge Yang-Mills theory at low momenta are presented in terms of hypergeometric series. They do not only show the expected scaling behavior but also additional kinematic divergences when only one momentum goes to zero. These singularities, which have also been proposed previously, induce a strong dependence on the kinematics in many dressing functions. The results are generalized to two and three dimensions and a range of values for the ghost propagator's infrared exponent kappa.Comment: 21 pages, 29 figures; numerical data of the infrared dressing functions can be obtained from the authors v2: a few minor changes, corresponds to version appearing in EPJ

    Curci-Ferrari mass and the Neuberger problem

    Get PDF
    We study the massive Curci-Ferrari model as a starting point for defining BRST quantisation for Yang-Mills theory on the lattice. In particular, we elucidate this proposal in light of topological approaches to gauge-fixing and study the case of a simple one-link Abelian model.Comment: 10 pages, uses elsart.cls style file. Eq.(18) corrected for final publicatio
    • …
    corecore