26 research outputs found

    Nanosizing techniques for improving bioavailability of drugs

    Get PDF
    The poor solubility of significant number of Active Pharmaceutical Ingredients (APIs) has become a major challenge in the drug development process. Drugs with poor solubility are difficult to formulate by conventional methods and often show poor bioavailability. In the last decade, attention has been focused on developing nanocrystals for poorly water soluble drugs using nanosizing techniques. Nanosizing is a pharmaceutical process that changes the size of a drug to the sub-micron range in an attempt to increase its surface area and consequently its dissolution rate and bioavailability. The effectiveness of nanocrystal drugs is evidenced by the fact that six FDA approved nanocrystal drugs are already on the market. The bioavailabilities of these preparations have been significantly improved compared to their conventional dosage forms. There are two main approaches for preparation of drug nanocrystals; these are the top-down and bottom-up techniques. Top-down techniques have been successfully used in both lab scale and commercial scale manufacture. Bottom-up approaches have not yet been used at a commercial level, however, these techniques have been found to produce narrow sized distribution nanocrystals using simple methods. Bottom-up techniques have been also used in combination with top-down processes to produce drug nanoparticles. The main aim of this review article is to discuss the various methods for nanosizing drugs to improve their bioavailabilities

    A Review on the conversion of levulinic acid and its esters to various useful chemicals

    No full text

    Selective Hydrogenation of Levulinic Acid Using Ru/C Catalysts Prepared by Sol-Immobilisation

    Get PDF
    A 1% Ru/C catalyst prepared by the sol immobilization method showed a high yield of γ-valerolactone from levulinic acid. We performed an optimization of the catalyst by varying the preparation variables involved in the sol immobilization method and detremined that the ratio of PVA, NaBH4 to Ru and heat treatment conditions play a crucial role in the synthesis of active and selective catalysts. By varying these parameters we have identified the optimum conditions for catalyst preparation by providing well dispersed nanoparticles of RuOx on the carbon support that are reducible under low reaction temperature and in turn gave an enhanced catalytic activity. In contrast to a catalyst prepared without using a PVA stabiliser, the use of a small amount PVA (PVA/Ru = 0.1) provided active nanoparticles, by controlling the steric size of the Ru nanoparticles. An optimum amount of NaBH4 was required in order to provide the reducible Ru species on the surface of catalyst and further increase in NaBH4 was found to cause a decline in activity that was related to the kinetics of nanoparticle formation during catalyst preparation. A variation of heat treatment temperature showed a corresponding decrease in catalytic activity linked with the sintering and an increase in particle size
    corecore