6,077 research outputs found

    Enrichment of innate lymphoid cell populations in gingival tissue

    Get PDF
    Innate lymphoid cells (ILCs) are a population of lymphocytes that act as the first line of immunologic defense at mucosal surfaces. The ILC family in the skin, lungs, and gastrointestinal tissues has been investigated, and there are reports of individual subsets of ILCs in the oral tissues. We sought to investigate the whole ILC population (group 1, 2, and 3 subsets) in the murine gingivae and the lymph nodes draining the oral cavity. We show that ILCs made up a greater proportion of the whole CD45+ lymphocyte population in the murine gingivae (0.356% ± 0.039%) as compared with the proportion of ILCs in the draining lymph nodes (0.158% ± 0.005%). Cytokine profiling of the ILC populations demonstrated different proportions of ILC subsets in the murine gingivae versus the regional lymph nodes. The majority of ILCs in the draining lymph nodes expressed IL-5, whereas there were equal proportions of IFN-γ- and IL-5 expressing ILCs in the oral mucosa. The percentage of IL-17+ ILCs was comparable between the murine gingivae and the oral draining lymph nodes. These data suggest an enrichment of ILCs in the murine gingivae, and these ILCs reflect a cytokine profile discrepant to that of the local draining lymph nodes. These studies indicate diversity and enrichment of ILCs at the oral mucosal surface. The function of ILCs in the oral cavity remains to be determined; here, we provide a premise of ILC populations that merits future consideration in investigations of mouse models and human tissues

    Categorisation and Detection of Dark Matter Candidates from String/M-theory Hidden Sectors

    Get PDF
    We study well-motivated dark matter candidates arising from weakly-coupled hidden sectors in compactified string/MM-theory. Imposing generic top-down constraints greatly restricts allowed candidates. By considering the possible mechanisms for achieving the correct dark matter relic density, we compile categories of viable dark matter candidates and annihilation mediators. We consider the case where supersymmetry breaking occurs via moduli stabilisation and is gravitationally mediated to the visible and other hidden sectors, without assuming sequestering of the sector in which supersymmetry is broken. We find that in this case, weakly-coupled hidden sectors only allow for fermionic dark matter. Additionally, most of the mechanisms for obtaining the full relic density only allow for a gauge boson mediator, such as a dark Z′Z'. Given these considerations, we study the potential for discovering or constraining the allowed parameter space given current and future direct detection experiments, and direct production at the LHC. We also present a model of a hidden sector which would contain a satisfactory dark matter candidate.Comment: 29 pages, 10 figure

    A quantum mechanical approach to establishing the magnetic field orientation from a maser Zeeman profile

    Full text link
    Recent comparisons of magnetic field directions derived from maser Zeeman splitting with those derived from continuum source rotation measures have prompted new analysis of the propagation of the Zeeman split components, and the inferred field orientation. In order to do this, we first review differing electric field polarization conventions used in past studies. With these clearly and consistently defined, we then show that for a given Zeeman splitting spectrum, the magnetic field direction is fully determined and predictable on theoretical grounds: when a magnetic field is oriented away from the observer, the left-hand circular polarization is observed at higher frequency and the right-hand polarization at lower frequency. This is consistent with classical Lorentzian derivations. The consequent interpretation of recent measurements then raises the possibility of a reversal between the large-scale field (traced by rotation measures) and the small-scale field (traced by maser Zeeman splitting).Comment: 10 pages, 5 Figures, accepted for publication in MNRA

    DEFECTS IN HEMATOPOIETIC DIFFERENTIATION IN NZB AND NZC MICE

    Get PDF
    Hematopoietic stem cell activity in inbred NZB and NZC mice has been determined by transplantation and endogenous spleen colony assays. Whereas NZB mice show normal colony-forming unit (CFU) activity in the transplantation assay, they show markedly elevated endogenous CFU. NZC mice also show this markedly elevated endogenous CFU activity, but in the transplantation assay show only about 5–10% of normal CFU counts. When NZC stem cells are tested for CFU activity in irradiated recipients of the H-2d type, almost normal colony numbers occur. NZB stem cells however also cannot form colonies in NZC mice. These results suggest that NZC mice have a defect in the micro-environment of the spleen which renders them incapable of allowing transplanted CFU to form colonies. Genetic analysis of both the NZC defect as a CFU recipient, and the elevated endogenous count in NZB and NZC, shows that both are controlled by single recessive genes which are not linked to either coat color, agouti, H-2 or Ig loci. Of even more relevance is the finding that these hematopoietic abnormalities are not linked to the genes involved in controlling autoantibody formation to red cells in the NZB mice. These mice therefore appear to show two distinct hematopoietic abnormalities, the analysis of which may be of considerable value in understanding the detailed events of hematopoietic stem cell differentiation

    Phonon density of states of iron solid solutions at ambient and high pressures using nuclear inelastic X-ray scattering (NRIXS)

    Full text link
    Nuclear resonant inelastic x-ray scattering (NRIXS) of synchrotron radiation uses the energy transferred during the inelastic nuclear absorption of photons to determine phonon density of states for solid Mössbauer isotopes. This type of experiment can be conducted at ambient and high pressures with the use of a diamond anvil cell (DAC) and a rhenium gasket. Here, we are concerned with the phonon DOS of α-FePt 10% at pressures up to 30 GPa, as well as FeAl 4.3%, 6.4%, and 27.1% at ambient pressures. The iron samples used are doped in order to increase the pressure at which the alpha to epsilon phase transition for iron occurs. As the most abundant element within Earth’s core, the study of iron is fundamental in geophysics and in terms of thermodynamic modeling. 57Fe is the most common Mössbauer isotope, and its lattice dynamics have been greatly studied. The phase transition of magnetic α-Fe, body-centered cubic structure, to nonmagnetic ε-Fe, hexagonal close-packed structure, (see figure 1) occurs around 13 GPa [1]. We recently conducted experiments at the APS on beamline 16-IDD to determine how doping Fe samples with Pt and Al affects the Fe α-ε transition. As iron is the most abundant element within Earth’s core, understanding how doping changes its transition is especially important in geophysics and in terms of thermodynamic modeling
    • …
    corecore