3,210 research outputs found
Potential Applications of Active Antenna Technologies for Emerging NASA Space Communications Scenarios
AbstractThe National Aeronautics and Space Administration (NASA) is presently embarking on the implementation of far-reaching changes within the framework of both space and aeronautics communications architectures. For example, near earth relays are looking to transition from the traditional few large geostationary satellites to satellite constellations consisting of thousands of small low earth orbiting satellites while lunar space communications will require the need to relay data from many assets distributed on the lunar surface back to earth. Furthermore, within the aeronautics realm, satellite communications for beyond line of sight (BLOS) links are being investigated in tandem with the proliferation of unmanned aerial systems (UAS) within the urban air mobility (UAM) environment. In all of these scenarios, future communications architectures will demand the need to connect and quickly transition between many nodes for large data volume transport. As such, NASA Glenn Research Center (GRC) has been heavily investigating the development of low cost phased array technologies that can readily address these various scenario conditions. In particular, GRC is presently exploring 5G-based beamformer technologies to leverage commercial timescale and volume production cycles which have heretofore not existed within the frequency allocations utilized for NASA applications. In this paper, an overview of the potential future applications of phased arrays being envisioned by NASA are discussed, along with technology feasibility demonstrations being conducted by GRC implementing low cost, 5G based beamformer technologies
Parameterized Algorithms for Graph Partitioning Problems
We study a broad class of graph partitioning problems, where each problem is
specified by a graph , and parameters and . We seek a subset
of size , such that is at most
(or at least) , where are constants
defining the problem, and are the cardinalities of the edge sets
having both endpoints, and exactly one endpoint, in , respectively. This
class of fixed cardinality graph partitioning problems (FGPP) encompasses Max
-Cut, Min -Vertex Cover, -Densest Subgraph, and -Sparsest
Subgraph.
Our main result is an algorithm for any problem in
this class, where is the maximum degree in the input graph.
This resolves an open question posed by Bonnet et al. [IPEC 2013]. We obtain
faster algorithms for certain subclasses of FGPPs, parameterized by , or by
. In particular, we give an time algorithm for Max
-Cut, thus improving significantly the best known time
algorithm
Seven exercises planned to stimulate the flow of ideas in creative composition
Thesis (Ed.M.)--Boston Universit
Parameterized Complexity of the k-anonymity Problem
The problem of publishing personal data without giving up privacy is becoming
increasingly important. An interesting formalization that has been recently
proposed is the -anonymity. This approach requires that the rows of a table
are partitioned in clusters of size at least and that all the rows in a
cluster become the same tuple, after the suppression of some entries. The
natural optimization problem, where the goal is to minimize the number of
suppressed entries, is known to be APX-hard even when the records values are
over a binary alphabet and , and when the records have length at most 8
and . In this paper we study how the complexity of the problem is
influenced by different parameters. In this paper we follow this direction of
research, first showing that the problem is W[1]-hard when parameterized by the
size of the solution (and the value ). Then we exhibit a fixed parameter
algorithm, when the problem is parameterized by the size of the alphabet and
the number of columns. Finally, we investigate the computational (and
approximation) complexity of the -anonymity problem, when restricting the
instance to records having length bounded by 3 and . We show that such a
restriction is APX-hard.Comment: 22 pages, 2 figure
Parameterized Inapproximability of Target Set Selection and Generalizations
In this paper, we consider the Target Set Selection problem: given a graph
and a threshold value for any vertex of the graph, find a minimum
size vertex-subset to "activate" s.t. all the vertices of the graph are
activated at the end of the propagation process. A vertex is activated
during the propagation process if at least of its neighbors are
activated. This problem models several practical issues like faults in
distributed networks or word-to-mouth recommendations in social networks. We
show that for any functions and this problem cannot be approximated
within a factor of in time, unless FPT = W[P],
even for restricted thresholds (namely constant and majority thresholds). We
also study the cardinality constraint maximization and minimization versions of
the problem for which we prove similar hardness results
Counting dependent and independent strings
The paper gives estimations for the sizes of the the following sets: (1) the
set of strings that have a given dependency with a fixed string, (2) the set of
strings that are pairwise \alpha independent, (3) the set of strings that are
mutually \alpha independent. The relevant definitions are as follows: C(x) is
the Kolmogorov complexity of the string x. A string y has \alpha -dependency
with a string x if C(y) - C(y|x) \geq \alpha. A set of strings {x_1, \ldots,
x_t} is pairwise \alpha-independent if for all i different from j, C(x_i) -
C(x_i | x_j) \leq \alpha. A tuple of strings (x_1, \ldots, x_t) is mutually
\alpha-independent if C(x_{\pi(1)} \ldots x_{\pi(t)}) \geq C(x_1) + \ldots +
C(x_t) - \alpha, for every permutation \pi of [t]
Impossibility of independence amplification in Kolmogorov complexity theory
The paper studies randomness extraction from sources with bounded
independence and the issue of independence amplification of sources, using the
framework of Kolmogorov complexity. The dependency of strings and is
, where
denotes the Kolmogorov complexity. It is shown that there exists a
computable Kolmogorov extractor such that, for any two -bit strings with
complexity and dependency , it outputs a string of length
with complexity conditioned by any one of the input
strings. It is proven that the above are the optimal parameters a Kolmogorov
extractor can achieve. It is shown that independence amplification cannot be
effectively realized. Specifically, if (after excluding a trivial case) there
exist computable functions and such that for all -bit strings and with , then
Structural parameterizations for boxicity
The boxicity of a graph is the least integer such that has an
intersection model of axis-aligned -dimensional boxes. Boxicity, the problem
of deciding whether a given graph has boxicity at most , is NP-complete
for every fixed . We show that boxicity is fixed-parameter tractable
when parameterized by the cluster vertex deletion number of the input graph.
This generalizes the result of Adiga et al., that boxicity is fixed-parameter
tractable in the vertex cover number.
Moreover, we show that boxicity admits an additive -approximation when
parameterized by the pathwidth of the input graph.
Finally, we provide evidence in favor of a conjecture of Adiga et al. that
boxicity remains NP-complete when parameterized by the treewidth.Comment: 19 page
Sources contributing to background surface ozone in the US Intermountain West
We quantify the sources contributing to background surface ozone
concentrations in the US Intermountain West by using the GEOS-Chem chemical
transport model with 1 / 2° × 2 / 3° horizontal
resolution to interpret the Clean Air Status and Trends Network (CASTNet) ozone monitoring data for 2006–2008. We
isolate contributions from lightning, wildfires, the stratosphere, and
California pollution. Lightning emissions are constrained by observations and
wildfire emissions are estimated from daily fire reports. We find that
lightning increases mean surface ozone in summer by 10 ppbv in the
Intermountain West, with moderate variability. Wildfire plumes generate
high-ozone events in excess of 80 ppbv in GEOS-Chem, but CASTNet ozone
observations in the Intermountain West show no enhancements during these
events nor do they show evidence of regional fire influence. Models may
overestimate ozone production in fresh fire plumes because of inadequate
chemistry and grid-scale resolution. The highest ozone concentrations
observed in the Intermountain West (> 75 ppbv) in spring are
associated with stratospheric intrusions. The model captures the timing of
these intrusions but not their magnitude, reflecting numerical diffusion
intrinsic to Eulerian models. This can be corrected statistically through a
relationship between model bias and the model-diagnosed magnitude of
stratospheric influence; with this correction, models may still be useful to
forecast and interpret high-ozone events from stratospheric intrusions. We
show that discrepancy between models in diagnosing stratospheric influence is
due in part to differences in definition, i.e., whether stratospheric ozone
is diagnosed as produced in the stratosphere (GEOS-Chem definition) or as
transported from above the tropopause. The latter definition can double the
diagnosed stratospheric influence in surface air by labeling as
"stratospheric" any ozone produced in the troposphere and temporarily
transported to the stratosphere. California pollution influence in the
Intermountain West frequently exceeds 10 ppbv but is generally not
correlated with the highest ozone events
Infrared Instrumentation and Astronomy
Contains research objectives and summary of research on five research projects.Joint Services Electronics Program (Contract DAAB07-76-C-1400)M.I.T. Sloan Fund for Basic ResearchNational Aeronautics and Space Administration (Contract NAS5-23731)National Aeronautics and Space Administration (Grant NGR 22-009-526
- …
