research

Potential Applications of Active Antenna Technologies for Emerging NASA Space Communications Scenarios

Abstract

AbstractThe National Aeronautics and Space Administration (NASA) is presently embarking on the implementation of far-reaching changes within the framework of both space and aeronautics communications architectures. For example, near earth relays are looking to transition from the traditional few large geostationary satellites to satellite constellations consisting of thousands of small low earth orbiting satellites while lunar space communications will require the need to relay data from many assets distributed on the lunar surface back to earth. Furthermore, within the aeronautics realm, satellite communications for beyond line of sight (BLOS) links are being investigated in tandem with the proliferation of unmanned aerial systems (UAS) within the urban air mobility (UAM) environment. In all of these scenarios, future communications architectures will demand the need to connect and quickly transition between many nodes for large data volume transport. As such, NASA Glenn Research Center (GRC) has been heavily investigating the development of low cost phased array technologies that can readily address these various scenario conditions. In particular, GRC is presently exploring 5G-based beamformer technologies to leverage commercial timescale and volume production cycles which have heretofore not existed within the frequency allocations utilized for NASA applications. In this paper, an overview of the potential future applications of phased arrays being envisioned by NASA are discussed, along with technology feasibility demonstrations being conducted by GRC implementing low cost, 5G based beamformer technologies

    Similar works