10 research outputs found

    The Value of SSTR2 Receptor-Targeted PET/CT in Proton Irradiation of Grade I Meningioma

    Get PDF
    Grade I meningioma is the most common intracranial tumor in adults. The standard imaging for its radiation treatment planning is MRI, and [68Ga]1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated PET/CT can further improve delineation. We investigated the impact of PET/CT on interobserver variability in identifying the tumor in 30 anonymized patients. Four radiation oncologists independently contoured residual tumor volume, first using only MRI and subsequently with the addition of PET/CT. Conformity indices (CIs) were calculated between common volumes, observer pairs and compared to the volumes previously used. Overall, 29/30 tumors (96.6%) showed [68Ga]Ga-DOTA avidity. With help of PET/CT, the participants identified six cases with new lesions not recognized in MRI, including two where new findings would critically alter the target volume used for radiation. The PET/CT-aided series demonstrated superior conformity, as compared to MRI-only between observer pairs (median CI = 0.58 vs. 0.49; p = 0.002), common volumes (CI = 0.34; vs. 0.29; p = 0.002) and matched better the reference volumes actually used for patient treatment (CI = 0.55 vs. 0.39; p = 0.008). Cis in the PET/CT-aided series were lower for meningiomas outside of the skull base (0.2 vs. 0.44; p = 0.03). We conclude that SSTR2 receptor-targeted PET/CT is a valuable tool for planning particle therapy of incompletely resected meningioma. It serves both as a workup procedure and an aid for delineation process that reduces the likelihood of marginal misses

    A quantitative comparison of the performance of three deformable registration algorithms in radiotherapy

    Get PDF
    AbstractWe present an evaluation of various non-rigid registration algorithms for the purpose of compensating interfractional motion of the target volume and organs at risk areas when acquiring CBCT image data prior to irradiation. Three different deformable registration (DR) methods were used: the Demons algorithm implemented in the iPlan Software (BrainLAB AG, Feldkirchen, Germany) and two custom-developed piecewise methods using either a Normalized Correlation or a Mutual Information metric (featureletNC and featureletMI). These methods were tested on data acquired using a novel purpose-built phantom for deformable registration and clinical CT/CBCT data of prostate and lung cancer patients. The Dice similarity coefficient (DSC) between manually drawn contours and the contours generated by a derived deformation field of the structures in question was compared to the result obtained with rigid registration (RR). For the phantom, the piecewise methods were slightly superior, the featureletNC for the intramodality and the featureletMI for the intermodality registrations. For the prostate cases in less than 50% of the images studied the DSC was improved over RR. Deformable registration methods improved the outcome over a rigid registration for lung cases and in the phantom study, but not in a significant way for the prostate study. A significantly superior deformation method could not be identified

    A quantitative comparison of the performance of three deformable registration algorithms in radiotherapy

    Get PDF
    AbstractWe present an evaluation of various non-rigid registration algorithms for the purpose of compensating interfractional motion of the target volume and organs at risk areas when acquiring CBCT image data prior to irradiation. Three different deformable registration (DR) methods were used: the Demons algorithm implemented in the iPlan Software (BrainLAB AG, Feldkirchen, Germany) and two custom-developed piecewise methods using either a Normalized Correlation or a Mutual Information metric (featureletNC and featureletMI). These methods were tested on data acquired using a novel purpose-built phantom for deformable registration and clinical CT/CBCT data of prostate and lung cancer patients. The Dice similarity coefficient (DSC) between manually drawn contours and the contours generated by a derived deformation field of the structures in question was compared to the result obtained with rigid registration (RR). For the phantom, the piecewise methods were slightly superior, the featureletNC for the intramodality and the featureletMI for the intermodality registrations. For the prostate cases in less than 50% of the images studied the DSC was improved over RR. Deformable registration methods improved the outcome over a rigid registration for lung cases and in the phantom study, but not in a significant way for the prostate study. A significantly superior deformation method could not be identified

    Normofractionated and moderately hypofractionated proton therapy: Comparison of acute toxicity and early quality of life outcomes

    Get PDF
    Aim Data on the safety of moderately hypofractionated proton beam therapy (PBT) are limited. The aim of this study is to compare the acute toxicity and early quality of life (QoL) outcomes of normofractionated (nPBT) and hypofractionated PBT (hPBT). Results Overall, the highest toxicity grades of G0, G1, G2, and G3 were observed in 7 (5%), 40 (28.8%), 78 (56.1%), and 15 (10.8%) patients, respectively. According to organ and site, no statistically significant differences were detected in the majority of toxicity comparisons (66.7%). For A&P, hPBT showed a more favorable toxicity profile as compared to nPBT with a higher frequency of G0 and G1 and a lower frequency of G2 and G3 events (p = 0.04), more patients with improvement (95.7% vs 70%, p = 0.023), and full resolution of toxicities (87% vs 50%, p = 0.008). Skin toxicity was unanimously milder for hPBT compared to nPBT in A&P and ST locations (p = 0.018 and p = 0.025, respectively). No significant differences in QoL were observed in 97% of comparisons for QLQ-C30 scale except for loss of appetite in H&N patients (+33.3 for nPBT and 0 for hPBT, p = 0.02) and role functioning for A&P patients (0 for nPBT vs +16.7 hPBT, p = 0.003). For QLQ-HN35, 97.9% of comparisons did not reveal significant differences, with pain as the only scale varying between the groups (-8.33 vs -25, p = 0.016). Conclusion Hypofractionated proton therapy offers non-inferior early safety and QoL as compared to normofractionated irradiation and warrants further clinical investigation

    El Diario de Pontevedra : periódico liberal: Ano XXI Número 3569 - 1904 decembro 31

    No full text
    Background Clinical decision making in oncology is based on both inter- and multidisciplinary approach. Hence teaching future doctors involved in oncology or general health practice is crucial. The aim of the Vienna Summer School on Oncology (VSSO) as an international, integrated, undergraduate oncology course is to teach medical students interdisciplinary team communication and application of treatment concepts/algorithms in a multidisciplinary setting. Method The teaching is based on an inter- and multidisciplinary faculty and a multimodal education approach to address different learning styles. The participants rated their satisfaction of the program voluntarily after finishing the course according to a grading scale from one (not good) to five (very good). The learning success was assessed by a compulsory pre-VSSO and post-VSSO single choice questionnaire. Results Program organisation was rated with a mean score of 4.47 out of 5.0 (SD 0.51), composition of the program and range of topics with a mean score of 4.68 (SD 0.58) and all teachers with a mean score of 4.36 (SD 0.40) points. Student evaluation at the beginning and end of the program indicated significant knowledge acquisition i.e., general aspects of cancer: median 8.75 points (IQR 7.59.4) vs.10.0 points (IQR 9.410.0) p = 0.005; specific aspects of cancer: median 4.87 points (IQR 3.335.71) vs. 8.72 points (IQR 6.789.49) p 0.001, respectively. Conclusion Even though the participants represent a selection of students with special interest in cancer, the results of the VSSO indicate the benefit of an inter- and multidisciplinary teaching approach within an oncology module.(VLID)484797

    Proton or Carbon Ion Therapy for Skull Base Chordoma: Rationale and First Analysis of a Mono-Institutional Experience

    No full text
    Background: Skull base chordomas are radio-resistant tumors that require high-dose, high-precision radiotherapy, as can be delivered by particle therapy (protons and carbon ions). We performed a first clinical outcome analysis of particle therapy based on the initial 4-years of operation. Methods: Between August 2017 and October 2021, 44 patients were treated with proton (89%) or carbon ion therapy (11%). Prior gross total resection had been performed in 21% of lesions, subtotal resection in 57%, biopsy in 12% and decompression in 10%. The average prescription dose was 75.2 Gy RBE in 37 fractions for protons and 66 Gy RBE in 22 fractions for carbon ions. Results: At a median follow-up of 34.3 months (range: 1–55), 2-, and 3-year actuarial local control rates were 95.5% and 90.9%, respectively. The 2-, and 3-year overall and progression-free survival rates were 97.7%, 93.2%, 95.5% and 90.9%, respectively. The tumor volume at the time of particle therapy was highly predictive of local failure (p < 0.01), and currently, there is 100% local control in patients with tumors < 49 cc. No grade ≥3 toxicities were observed. There was no significant difference in outcome or side effect profile seen for proton versus carbon ion therapy. Five patients (11.4%) experienced transient grade ≤2 radiation-induced brain changes. Conclusions: The first analysis suggests the safety and efficacy of proton and carbon ion therapy at our center. The excellent control of small to mid-size chordomas underlines the effectiveness of particle therapy and importance of upfront maximum debulking of large lesions

    Impact of SSTR PET on Inter-Observer Variability of Target Delineation of Meningioma and the Possibility of Using Threshold-Based Segmentations in Radiation Oncology

    No full text
    Aim: The aim of this study was to assess the effects of including somatostatin receptor agonist (SSTR) PET imaging in meningioma radiotherapy planning by means of changes in inter-observer variability (IOV). Further, the possibility of using threshold-based delineation approaches for semiautomatic tumor volume definition was assessed. Patients and Methods: Sixteen patients with meningioma undergoing fractionated radiotherapy were delineated by five radiation oncologists. IOV was calculated by comparing each delineation to a consensus delineation, based on the simultaneous truth and performance level estimation (STAPLE) algorithm. The consensus delineation was used to adapt a threshold-based delineation, based on a maximization of the mean Dice coefficient. To test the threshold-based approach, seven patients with SSTR-positive meningioma were additionally evaluated as a validation group. Results: The average Dice coefficients for delineations based on MRI alone was 0.84 &plusmn; 0.12. For delineation based on MRI + PET, a significantly higher dice coefficient of 0.87 &plusmn; 0.08 was found (p &lt; 0.001). The Hausdorff distance decreased from 10.96 &plusmn; 11.98 mm to 8.83 &plusmn; 12.21 mm (p &lt; 0.001) when adding PET for the lesion delineation. The best threshold value for a threshold-based delineation was found to be 14.0% of the SUVmax, with an average Dice coefficient of 0.50 &plusmn; 0.19 compared to the consensus delineation. In the validation cohort, a Dice coefficient of 0.56 &plusmn; 0.29 and a Hausdorff coefficient of 27.15 &plusmn; 21.54 mm were found for the threshold-based approach. Conclusions: SSTR-PET added to standard imaging with CT and MRI reduces the IOV in radiotherapy planning for patients with meningioma. When using a threshold-based approach for PET-based delineation of meningioma, a relatively low threshold of 14.0% of the SUVmax was found to provide the best agreement with a consensus delineation
    corecore