6 research outputs found

    On the evolution of trophic position

    No full text
    The trophic structure of food webs is primarily determined by the variation in trophic position among species and individuals. Temporal dynamics of food web structure are central to our understanding of energy and nutrient fluxes in changing environments, but little is known about how evolutionary processes shape trophic position variation in natural populations. We propose that trophic position, whose expression depends on both environmental and genetic determinants of the diet variation in individual consumers, is a quantitative trait that can evolve via natural selection. Such evolution can occur either when trophic position is correlated with other heritable morphological and behavioural traits under selection, or when trophic position is a target of selection, which is possible if the fitness effects of prey items are heterogeneously distributed along food chains. Recognising trophic position as an evolving trait, whose expression depends on the food web context, provides an important conceptual link between behavioural foraging theory and food web dynamics, and a useful starting point for the integration of ecological and evolutionary studies of trophic position.publishe

    The genomics of phenotypically differentiated Asellus

    No full text
    Organisms well suited for the study of ecotype formation have wide distribution ranges, where they adapt to multiple drastically different habitats repeatedly over space and time. Here we study such ecotypes in a Crustacean model, Asellus aquaticus, a commonly occurring isopod found in freshwater habitats as diverse as streams, caves and lakes. Previous studies focusing on cave vs. surface ecotypes have attributed depigmentation, eye loss and prolonged antennae to several south European cave systems. Likewise, surveys across multiple Swedish lakes have identified the presence of dark-pigmented "reed" and light-pigmented "stonewort" ecotypes, which can be found within the same lake. In this study, we sequenced the first draft genome of A. aquaticus, and subsequently use this to map reads and call variants in surface stream, cave and two lake ecotypes. In addition, the draft genome was combined with a RADseq approach to perform a quantitative trait locus (QTL) mapping study using a laboratory bred F-2 and F-4 cave x surface intercross. We identified genomic regions associated with body pigmentation, antennae length and body size. Furthermore, we compared genome-wide differentiation between natural populations and found several genes potentially associated with these habitats. The assessment of the cave QTL regions in the light-dark comparison of lake populations suggests that the regions associated with cave adaptation are also involved with genomic differentiation in the lake ecotypes. These demonstrate how troglomorphic adaptations can be used as a model for related ecotype formation.Funding Agencies|National Genomics Infrastructure in Genomics Production Stockholm - Science for Life Laboratory; LiU Neuro Framework; Swedish Research Council (VR)Swedish Research Council</p
    corecore