27 research outputs found

    Electrical resistance of individual defects at a topological insulator surface

    Full text link
    Three-dimensional topological insulators host surface states with linear dispersion, which manifest as a Dirac cone. Nanoscale transport measurements provide direct access to the transport properties of the Dirac cone in real space and allow the detailed investigation of charge carrier scattering. Here, we use scanning tunnelling potentiometry to analyse the resistance of different kinds of defects at the surface of a (Bi0.53Sb0.47)2Te3 topological insulator thin film. The largest localized voltage drop we find to be located at domain boundaries in the topological insulator film, with a resistivity about four times higher than that of a step edge. Furthermore, we resolve resistivity dipoles located around nanoscale voids in the sample surface. The influence of such defects on the resistance of the topological surface state is analysed by means of a resistor network model. The effect resulting from the voids is found to be small compared to the other defects

    Quantum spin Hall edge states and interlayer coupling in twisted-bilayer WTe2_2

    Full text link
    The quantum spin Hall (QSH) effect, characterized by topologically protected spin-polarized edge states, was recently demonstrated in monolayers of the transition metal dichalcogenide (TMD) WTe2_2. However, the robustness of this topological protection remains largely unexplored in van der Waals heterostructures containing one or more layers of a QSH insulator. In this work, we use scanning tunneling microscopy and spectroscopy (STM/STS) to explore the topological nature of twisted bilayer (tBL) WTe2_2 which is produce from folded monolayers, as well as, tear-and-stack fabrication. At the tBL bilayer edge, we observe the characteristic spectroscopic signature of the QSH edge state that is absent in topologically trivial as-grown bilayer. For small twist angles, a rectangular moir\'e pattern develops, which results in local modifications of the band structure. Using first principles calculations, we quantify the interactions in tBL WTe2_2 and its topological edge states as function of interlayer distance and conclude that it is possible to tune the topology of WTe2_2 bilayers via the twist angle as well as interlayer interactions

    Lifting the spin-momentum locking in ultra-thin topological insulator films

    Full text link
    Three-dimensional (3D) topological insulators (TIs) are known to carry 2D Dirac-like topological surface states in which spin-momentum locking prohibits backscattering. When thinned down to a few nanometers, the hybridization between the topological surface states at the top and bottom surfaces results in a topological quantum phase transition, which can lead to the emergence of a quantum spin Hall phase. Here, we study the thickness-dependent transport properties across the quantum phase transition on the example of (Bi0.16_{0.16}Sb0.84_{0.84})2_2Te3_3 films, with a four-tip scanning tunnelling microscope. Our findings reveal an exponential drop of the conductivity below the critical thickness. The steepness of this drop indicates the presence of spin-conserving backscattering between the top and bottom surface states, effectively lifting the spin-momentum locking and resulting in the opening of a gap at the Dirac point. Our experiments provide crucial steps towards the detection of quantum spin Hall states in transport measurements

    Probing edge state conductance in ultra-thin topological insulator films

    Full text link
    Quantum spin Hall (QSH) insulators have unique electronic properties, comprising a band gap in their two-dimensional interior and one-dimensional spin-polarized edge states in which current flows ballistically. In scanning tunneling microscopy (STM), the edge states manifest themselves as a localized density of states. However, there is a significant research gap between the observation of edge states in nanoscale spectroscopy, and the detection of ballistic transport in edge channels which typically relies on transport experiments with microscale lithographic contacts. Here, we study few-layer films of the three-dimensional topological insulator (Bix_{x}Sb1−x)2_{1-x})_2Te3_3, for which a topological transition to a two-dimensional topological QSH insulator phase has been proposed. Indeed, an edge state in the local density of states is observed within the band gap. Yet, in nanoscale transport experiments with a four-tip STM, 2 and 3 quintuple layer films do not exhibit a ballistic conductance in the edge channels. This demonstrates that the detection of edge states in spectroscopy can be misleading with regard to the identification of a QSH phase. In contrast, nanoscale multi-tip transport experiments are a robust method for effectively pinpointing ballistic edge channels, as opposed to trivial edge states, in quantum materials

    Suspended dry pick-up and flip-over assembly for van der Waals heterostructures with ultra-clean surfaces

    Full text link
    Van der Waals heterostructures are an excellent platform for studying intriguing interface phenomena, such as moir\'e and proximity effects. Surface science techniques like scanning tunneling microscopy (STM) have proven a powerful tool to study such heterostructures but have so far been hampered because of their high sensitivity to surface contamination. Here, we report a dry polymer-based assembly technique to fabricate van der Waals heterostructures with atomically clean surfaces. The key features of our suspended dry pick-up and flip-over technique are 1) the heterostructure surface never comes into contact with polymers, 2) it is entirely solvent-free, 3) it is entirely performed in a glovebox, and 4) it only requires temperatures below 130∘^{\circ}. By performing ambient atomic force microscopy and atomically-resolved scanning tunneling microscopy on example heterostructures, we demonstrate that we can fabricate air-sensitive heterostructures with ultra-clean interfaces and surfaces. Due to the lack of polymer melting, the technique is further compatible with heterostructure assembly under ultra-high vacuum conditions, which promises ultimate heterostructure quality
    corecore