29 research outputs found
Computerized visual feedback: an adjunct to robotic-assisted gait training
BACKGROUND AND PURPOSE: Robotic devices for walking rehabilitation allow new possibilities for providing performance-related information to patients during gait training. Based on motor learning principles, augmented feedback during robotic-assisted gait training might improve the rehabilitation process used to regain walking function. This report presents a method to provide visual feedback implemented in a driven gait orthosis (DGO). The purpose of the study was to compare the immediate effect on motor output in subjects during robotic-assisted gait training when they used computerized visual feedback and when they followed verbal instructions of a physical therapist. SUBJECTS: Twelve people with neurological gait disorders due to incomplete spinal cord injury participated. METHODS: Subjects were instructed to walk within the DGO in 2 different conditions. They were asked to increase their motor output by following the instructions of a therapist and by observing visual feedback. In addition, the subjects' opinions about using visual feedback were investigated by a questionnaire. RESULTS: Computerized visual feedback and verbal instructions by the therapist were observed to result in a similar change in motor output in subjects when walking within the DGO. Subjects reported that they were more motivated and concentrated on their movements when using computerized visual feedback compared with when no form of feedback was provided. DISCUSSION AND CONCLUSION: Computerized visual feedback is a valuable adjunct to robotic-assisted gait training. It represents a relevant tool to increase patients' motor output, involvement, and motivation during gait training, similar to verbal instructions by a therapist
Modulation of locomotor activity in complete spinal cord injury
The aim of this study was to evaluate the modulation of muscle activity during locomotor-like movements by different walking speeds in subjects with a motor complete spinal cord injury (SCI) compared to actively- and passively-walking control subjects without neurological deficit. Stepping movements on a treadmill were induced and assisted by a driven gait orthosis. Electromyographic (EMG) muscle activity of one leg (rectus and biceps femoris, tibialis anterior and gastrocnemius) was recorded and analyzed at three stepping velocities with similar body weight support in both subject groups. In SCI subjects, the EMG amplitude of biceps femoris, tibialis anterior and gastrocnemius was in general similar or weaker than in passively- and actively-stepping control subjects, but that of rectus femoris was larger. The degree of co-activation between tibialis anterior and gastrocnemius was higher in SCI than in control subjects. A significant velocity-dependent EMG modulation was present in all four-leg muscles in both subject groups. In SCI subjects, this EMG modulation was similar to that in actively stepping control subjects. It is concluded that in complete spastic SCI subjects, spinal neuronal circuits underlying locomotion can to a large extent adequately respond to a change in external drive to adapt the neuronal pattern to a new locomotion speed. The application of various speeds might enhance the effect of locomotor training in incomplete SCI subject
Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children
BACKGROUND: Virtual reality (VR) offers powerful therapy options within a functional, purposeful and motivating context. Several studies have shown that patients' motivation plays a crucial role in determining therapy outcome. However, few studies have demonstrated the potential of VR in pediatric rehabilitation. Therefore, we developed a VR-based soccer scenario, which provided interactive elements to engage patients during robotic assisted treadmill training (RAGT). The aim of this study was to compare the immediate effect of different supportive conditions (VR versus non-VR conditions) on motor output in patients and healthy control children during training with the driven gait orthosis Lokomat*.
METHODS: A total of 18 children (ten patients with different neurological gait disorders, eight healthy controls) took part in this study. They were instructed to walk on the Lokomat in four different, randomly-presented conditions: (1) walk normally without supporting assistance, (2) with therapists' instructions to promote active participation, (3) with VR as a motivating tool to walk actively and (4) with the VR tool combined with therapists' instructions. The Lokomat gait orthosis is equipped with sensors at hip and knee joint to measure man-machine interaction forces. Additionally, subjects' acceptance of the RAGT with VR was assessed using a questionnaire.
RESULTS: The mixed ANOVA revealed significant main effects for the factor CONDITIONS (p < 0.001) and a significant interaction CONDITIONS x GROUP (p = 0.01). Tests of between-subjects effects showed no significant main effect for the GROUP (p = 0.592). Active participation in patients and control children increased significantly when supported and motivated either by therapists' instructions or by a VR scenario compared with the baseline measurement "normal walking" (p < 0.001).
CONCLUSIONS: The VR scenario used here induces an immediate effect on motor output to a similar degree as the effect resulting from verbal instructions by the therapists. Further research needs to focus on the implementation of interactive design elements, which keep motivation high across and beyond RAGT sessions, especially in pediatric rehabilitation
Standardized voluntary force measurement in a lower extremity rehabilitation robot
BACKGROUND: Isometric force measurements in the lower extremity are widely used in rehabilitation of subjects with neurological movement disorders (NMD) because walking ability has been shown to be related to muscle strength. Therefore muscle strength measurements can be used to monitor and control the effects of training programs. A new method to assess isometric muscle force was implemented in the driven gait orthosis (DGO) Lokomat. To evaluate the capabilities of this new measurement method, inter- and intra-rater reliability were assessed. METHODS: Reliability was assessed in subjects with and without NMD. Subjects were tested twice on the same day by two different therapists to test inter-rater reliability and on two separate days by the same therapist to test intra-rater reliability. RESULTS: Results showed fair to good reliability for the new measurement method to assess isometric muscle force of lower extremities. In subjects without NMD, intraclass correlation coefficients (ICC) for inter-rater reliability ranged from 0.72 to 0.97 and intra-rater reliability from 0.71 to 0.90. In subjects with NMD, ICC ranged from 0.66 to 0.97 for inter-rater and from 0.50 to 0.96 for intra-rater reliability. CONCLUSION: Inter- and intra- rater reliability of an assessment method for measuring maximal voluntary isometric muscle force of lower extremities was demonstrated. We suggest that this method is a valuable tool for documentation and controlling of the rehabilitation process in patients using a DGO
The relative timing between eye and hand rapid sequential pointing is affected by time pressure, but not by advance knowledge
The present study examined the effect of timing constraints and advance knowledge on eye-hand coordination strategy in a sequential pointing task. Participants were required to point at two successively appearing targets on a screen while the inter-stimulus interval (ISI) and the trial order were manipulated, such that timing constraints were high (ISI = 300 ms) or low (ISI = 450 ms) and advance knowledge of the target location was present (fixed order) or absent (random order). Analysis of eye and finger onset and completion times per segment of the sequence indicated that oculo-manual behaviour was in general characterized by eye movements preceding the finger, as well as 'gaze anchoring' (i.e. eye fixation of the first target until completion of the finger movement towards that target). Advance knowledge of future target locations lead to shorter latency times of eye and hand, and smaller eye-hand lead times, which in combination resulted in shorter total movement times. There was, however, no effect of advance knowledge on the duration of gaze anchoring. In contrast, gaze anchoring did change as a function of the interval between successive stimuli and was shorter with a 300 ms ISI versus 450 ms ISI. Further correlation analysis provided some indication that shorter residual latency is associated with shorter pointing duration, without affecting accuracy. These results are consistent with a neural mechanism governing the coupling of eye and arm movements, which has been suggested to reside in the superior colliculus. The temporal coordination resulting from this coupling is a function of the time pressure on the visuo-manual system resulting from the appearance of external stimuli
Assessment of walking performance in robot-assisted gait training: A novel approach based on empirical data
Motivation and voluntary drive of patients can be improved by applying biofeedback during robot-assisted rehabilitation trainings. Biofeedback systems were traditionally based on theoretical assumptions. In this paper, we present a novel approach to calculate biofeedback during robot-assisted gait training. Our method was based on empirical data that were obtained from healthy subjects when simulating distinctive degrees of walking performance during robot-assisted gait training. This empirical data-based biofeedback (EDBF) method was evaluated with 18 subjects without gait disorders. A higher correlation between the subjects’ walking performance and biofeedback values was found for the EDBF method compared to a theory-based biofeedback approac
Adaptive support for patient-cooperative gait rehabilitation with the Lokomat
The rehabilitation robot Lokomat allows automated treadmill training for patients with neurological gait disorders. The basic position control approach for the robot has been extended to patient-cooperative strategies. These strategies provide more freedom and allow patients to actively influence their training. However, patients are likely to need additional support during patient-cooperative training. In this paper, we propose an algorithm based on iterative learning control that shapes a supportive torque field. The torque field is supposed to assist the patient as much as needed in performing the desired task. We evaluated the algorithm in a proof-of-concept experiment with 3 healthy subjects. Results showed that the amount of support was automatically adapted to the activity and the individual needs of the subjects. Furthermore, the support improved the performance of the subjects
MIMICS: Multimodal immersive motion rehabilitation of upper and lower extremities by exploiting biocooperation principles
The purpose of this paper is to present the newly founded European research project MIMICS. The hypothesis of this project is that movement training for neurorehabilitation can be substantially improved through immersive and multimodal sensory feedback. The approach is real-time acquisition of behavioral and physiological data from patients and the use of this to adaptively and dynamically change the displays of an immersive virtual reality system, with the goal of maximizing patient motivation. In this project two exemplary systems are complemented for robot-assisted rehabilitation of upper and lower extremities. The systems are able to record multi-sensory data (motion, forces, voice, muscle activity, heart rate, skin conductance etc.) and process this data in real-time to infer the intention of the patient and the overall psycho-physiological state. The computed information will be used to modify immersive virtual reality systems including 3D graphics and 3D sound. Experimental tests on humans are underway with expected basic insights into the presence and motivation of humans. Furthermore, MIMICS technology is entering clinical routine so that large patient populations (e.g. stroke, spinal cord injury) can benefit. ©2009 IEEE
Swing phase resistance enhances flexor muscle activity during treadmill locomotion in incomplete spinal cord injury
BACKGROUND: . This study investigated whether loading the legs during the swing phase of walking enhances flexor muscle activity in ambulatory patients with incomplete spinal cord injury (SCI). METHODS: . Nine patients had surface electromyography (EMG) and joint kinematics recorded from the lower extremities during treadmill walking. Swing phase loading of the legs was achieved by weights (1-3 kg) attached to each lower extremity or by a velocity-dependent resistance applied by the Lokomat robotic gait orthosis. RESULTS: . When patients walked with the weights, there was a consistent increase in the activity of the knee flexors and sometimes of hip or ankle flexor activity during swing. Similarly, when the robot applied the velocity-dependent resistance during walking, swing phase flexor EMG activity tended to be greater. Enhanced knee flexion was observed in all patients after the weights or the robot-generated resistance was removed. CONCLUSIONS: . Flexor muscle activity during swing can be enhanced through additional proprioceptive input in patients with incomplete SCI with brief aftereffects. Further testing of this strategy is necessary to determine if it can improve the gait of ambulatory patients