22 research outputs found

    Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1 in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Treatment of plants with HrpN<sub>Ea</sub>, a protein of harpin group produced by Gram-negative plant pathogenic bacteria, induces plant resistance to insect herbivores, including the green peach aphid <it>Myzus persicae</it>, a generalist phloem-feeding insect. Under attacks by phloem-feeding insects, plants defend themselves using the phloem-based defense mechanism, which is supposed to involve the phloem protein 2 (PP2), one of the most abundant proteins in the phloem sap. The purpose of this study was to obtain genetic evidence for the function of the <it>Arabidopsis thaliana </it>(Arabidopsis) PP2-encoding gene <it>AtPP2-A1 </it>in resistance to <it>M. persicae </it>when the plant was treated with HrpN<sub>Ea </sub>and after the plant was transformed with <it>AtPP2-A1</it>.</p> <p>Results</p> <p>The electrical penetration graph technique was used to visualize the phloem-feeding activities of apterous agamic <it>M. persicae </it>females on leaves of Arabidopsis plants treated with HrpN<sub>Ea </sub>and an inactive protein control, respectively. A repression of phloem feeding was induced by HrpN<sub>Ea </sub>in wild-type (WT) Arabidopsis but not in <it>atpp2-a1</it>/E/142, the plant mutant that had a defect in the <it>AtPP2-A1 </it>gene, the most HrpN<sub>Ea</sub>-responsive of 30 <it>AtPP2 </it>genes. In WT rather than <it>atpp2-a1</it>/E/142, the deterrent effect of HrpN<sub>Ea </sub>treatment on the phloem-feeding activity accompanied an enhancement of <it>AtPP2-A1 </it>expression. In PP2OETAt (<it>AtPP2-A1</it>-overexpression transgenic <it>Arabidopsis thaliana</it>) plants, abundant amounts of the <it>AtPP2-A1 </it>gene transcript were detected in different organs, including leaves, stems, calyces, and petals. All these organs had a deterrent effect on the phloem-feeding activity compared with the same organs of the transgenic control plant. When a large-scale aphid population was monitored for 24 hours, there was a significant decrease in the number of aphids that colonized leaves of HrpN<sub>Ea</sub>-treated WT and PP2OETAt plants, respectively, compared with control plants.</p> <p>Conclusions</p> <p>The repression in phloem-feeding activities of <it>M. persicae </it>as a result of <it>AtPP2-A1 </it>overexpression, and as a deterrent effect of HrpN<sub>Ea </sub>treatment in WT Arabidopsis rather than the <it>atpp2-a1</it>/E/142 mutant suggest that <it>AtPP2-A1 </it>plays a role in plant resistance to the insect, particularly at the phloem-feeding stage. The accompanied change of aphid population in leaf colonies suggests that the function of <it>AtPP2-A1 </it>is related to colonization of the plant.</p

    Skywork: A More Open Bilingual Foundation Model

    Full text link
    In this technical report, we present Skywork-13B, a family of large language models (LLMs) trained on a corpus of over 3.2 trillion tokens drawn from both English and Chinese texts. This bilingual foundation model is the most extensively trained and openly published LLMs of comparable size to date. We introduce a two-stage training methodology using a segmented corpus, targeting general purpose training and then domain-specific enhancement training, respectively. We show that our model not only excels on popular benchmarks, but also achieves \emph{state of the art} performance in Chinese language modeling on diverse domains. Furthermore, we propose a novel leakage detection method, demonstrating that test data contamination is a pressing issue warranting further investigation by the LLM community. To spur future research, we release Skywork-13B along with checkpoints obtained during intermediate stages of the training process. We are also releasing part of our SkyPile corpus, a collection of over 150 billion tokens of web text, which is the largest high quality open Chinese pre-training corpus to date. We hope Skywork-13B and our open corpus will serve as a valuable open-source resource to democratize access to high-quality LLMs

    Growth, Leaf Morphological and Physiological Adaptability of Leaf Beet (<i>Beta vulgaris var. cicla</i>) to Salt Stress: A Soil Culture Experiment

    No full text
    Soil salinization is a worldwide problem affecting agriculture and the environment. Utilizing saline land by screening and cultivating salt-tolerant crops is an economical and ecological solution. Leaf beet (Beta vulgaris var. cicla) is an important vegetable resource and has certain salt tolerance, but what concentration it can tolerate still remains to be verified. Hence, this work explored the adaptability of leaf beet to salt stress. A soil culture experiment was conducted. By adding NaCl to the soil, the concentrations of 0% (S0), 0.3% (S3), 0.5% (S5) and 0.7% (S7) NaCl salinity were set to analyze the changes of leaf beet growth (plant height, leaf number and biomass); leaf morphology (leaf area, shape, leaf mass per area (LMA) and tissue density); and leaf physiology (chlorophyll content, leaf relative water content (LRWC), water content at saturation (WCS), water saturation deficit (WSD) and succulence). The results showed that 0.3% NaCl salinity increased LMA and decreased biomass, while the rest were almost the same as the control (S0). Under 0.5% and 0.7% NaCl salinity, LRWC decreased significantly, while WCS and WSD increased significantly. Under such salt stress, the leaf beet adapted by reducing plant height, delaying the engendering of new leaves, decreasing leaf area, changing leaf shape, maintaining high chlorophyll content, and increasing LMA, tissue density and succulence. With these strategies, the leaf beets survived under salt stress up to 0.7% NaCl salinity with a certain biomass, providing a meaningful exploration for the multi-purpose planting and application of leaf beets on saline soils

    Empathy: The genetics-environment-endocrine-brain mechanism

    No full text

    Environmental characterization of burnt coal gangue banks at Yangquan, Shanxi Province, China

    No full text
    The environmental characteristics of coal gangue dumps in Yangquan (Shanxi Province, China) were investigated. The amounts of coal gangue are very high in this coal region given the large coal production. As a result, widespread spontaneous coal gangue combustion gives rise to serious environmental problems. Coal gangue (including bulk gangue and specific lithologies, such as coal, kaolinite-rich material, sandstone, carbonate minerals, and sulfide mineralizations), fired coal gangue and condensate products from gas vents were fully characterized with respect to mineralogy, chemistry and leaching potential. The mineral paragenesis of the fired coal gangue (cristobalite, mullite, hematite, trydimite, cordierite) showed that the combustion temperature could reach 1200 °C. This was also corroborated by laboratory calcination tests. During this combustion some elements such as C, Cl, F, S, N, As, Cd, Hg, Pb, Sn, Ge and Se are emitted into the atmosphere. However, condensation processes accounted for the partial trapping of gaseous emissions of As, S, N, Hg and Se. Thus, condensate mineralizations of elemental sulfur and ammonium salts enriched in Se, As and other trace elements are frequent in the gas vents. The leaching potential of trace elements in the fresh coal gangue was relatively low, but the leaching of weathered coal gangue and the gas vents condensates could give rise to environmental problems, as these materials produce acidic leachates and yield relatively high leachable levels of a number of elements. © 2008 Elsevier B.V. All rights reserved
    corecore