4,726 research outputs found

    f(R) Theories of Supergravities and Pseudo-supergravities

    Full text link
    We present f(R) theories of ten-dimensional supergravities, including the fermionic sector up to the quadratic order in fermion fields. They are obtained by performing the conformal scaling on the usual supergravities to the f(R) frame in which the dilaton becomes an auxiliary field and can be integrated out. The f(R) frame coincides with that of M-theory, D2-branes or NS-NS 5-branes. We study various BPS p-brane solutions and their near-horizon AdS \times sphere geometries in the context of the f(R) theories. We find that new solutions emerge with global structures that do not exist in the corresponding solutions of the original supergravity description. In lower dimensions, We construct the f(R) theory of N=2, D=5 gauged supergravity with a vector multiplet, and that for the four-dimensional U(1)^4 gauged theory with three vector fields set equal. We find that some previously-known BPS singular "superstars" become wormholes in the f(R) theories. We also construct a large class of f(R) (gauged) pseudo-supergravities. In addition we show that the breathing mode in the Kaluza-Klein reduction of Gauss-Bonnet gravity on S^1 is an auxiliary field and can be integrated out.Comment: Latex, 46 page

    Multiplet Structures of BPS Solitons

    Get PDF
    There exist simple single-charge and multi-charge BPS p-brane solutions in the D-dimensional maximal supergravities. From these, one can fill out orbits in the charge vector space by acting with the global symmetry groups. We give a classification of these orbits, and the associated cosets that parameterise them.Comment: Latex, 34 pages, comments and reference adde

    Consistent SO(6) Reduction Of Type IIB Supergravity on S^5

    Get PDF
    Type IIB supergravity can be consistently truncated to the metric and the self-dual 5-form. We obtain the complete non-linear Kaluza-Klein S^5 reduction Ansatz for this theory, giving rise to gravity coupled to the fifteen Yang-Mills gauge fields of SO(6) and the twenty scalars of the coset SL(6,R)/SO(6). This provides a consistent embedding of this subsector of N=8, D=5 gauged supergravity in type IIB in D=10. We demonstrate that the self-duality of the 5-form plays a crucial role in the consistency of the reduction. We also discuss certain necessary conditions for a theory of gravity and an antisymmetric tensor in an arbitrary dimension D to admit a consistent sphere reduction, keeping all the massless fields. We find that it is only possible for D=11, with a 4-form field, and D=10, with a 5-form. Furthermore, in D=11 the full bosonic structure of eleven-dimensional supergravity is required, while in D=10 the 5-form must be self-dual. It is remarkable that just from the consistency requirement alone one would discover D=11 and type IIB supergravities, and that D=11 is an upper bound on the dimension.Comment: Latex, 14 pages, typos corrected and comments adde

    Cosmological Solutions in String Theories

    Get PDF
    We obtain a large class of cosmological solutions in the toroidally-compactified low energy limits of string theories in DD dimensions. We consider solutions where a pp-dimensional subset of the spatial coordinates, parameterising a flat space, a sphere, or an hyperboloid, describes the spatial sections of the physically-observed universe. The equations of motion reduce to Liouville or SL(N+1,R)SL(N+1,R) Toda equations, which are exactly solvable. We study some of the cases in detail, and find that under suitable conditions they can describe four-dimensional expanding universes. We discuss also how the solutions in DD dimensions behave upon oxidation back to the D=10D=10 string theory or D=11D=11 M-theory.Comment: Latex, 21 pages, a reference adjuste

    Interacting Intersections

    Get PDF
    Intersecting p-branes can be viewed as higher-dimensional interpretations of multi-charge extremal p-branes, where some of the individual p-branes undergo diagonal dimensional oxidation, while the others oxidise vertically. Although the naive vertical oxidation of a single p-brane gives a continuum of p-branes, a more natural description arises if one considers a periodic array of p-branes in the higher dimension, implying a dependence on the compactification coordinates. This still reduces to the single lower-dimensional p-brane when viewed at distances large compared with the period. Applying the same logic to the multi-charge solutions, we are led to consider more general classes of intersecting p-brane solutions, again depending on the compactification coordinates, which turn out to be described by interacting functions rather than independent harmonic functions. These new solutions also provide a more satisfactory interpretation for the lower-dimensional multi-charge p-branes, which otherwise appear to be nothing more than the improbable coincidence of charge-centres of individual constituents with zero binding energy.Comment: 20 pages, Latex, references adde

    Non-zero transversity distribution of the pion in a quark-spectator-antiquark model

    Full text link
    We calculate the non-zero (na\"{i}ve) T-odd transverse momentum dependent transversity distribution h_1^{\perp}(x,\kp^2) of the pion in a quark-spectator-antiquark model. The final-state interaction is modelled by the approximation of one gluon exchange between the quark and the antiquark spectator. Using our model result we estimate the unsuppressed cos2ϕ\phi azimuthal asymmetry in unpolarized πp\pi^-p Drell-Yan process. We find that the transverse momentum dependence of h_1^{\perp}(x,\kp^2) of the pion is the same as that of h_1^{\perp}(x,\kp^2) of the proton calculated from the quark-scalar-diquark model, although the xx dependencies of them are different from each other. This suggests a connection between cos2ϕ\phi asymmetries in Drell-Yan processes with different initial hadrons.Comment: 6 LaTex Pages in Revtex format, 5 figures. Version to appear in PR

    A Killing tensor for higher dimensional Kerr-AdS black holes with NUT charge

    Full text link
    In this paper, we study the recently discovered family of higher dimensional Kerr-AdS black holes with an extra NUT-like parameter. We show that the inverse metric is additively separable after multiplication by a simple function. This allows us to separate the Hamilton-Jacobi equation, showing that geodesic motion is integrable on this background. The separation of the Hamilton-Jacobi equation is intimately linked to the existence of an irreducible Killing tensor, which provides an extra constant of motion. We also demonstrate that the Klein-Gordon equation for this background is separable.Comment: LaTeX, 14 pages. v2: Typo corrected and equation added. v3: Reference added, introduction expanded, published versio

    General Kerr-NUT-AdS Metrics in All Dimensions

    Full text link
    The Kerr-AdS metric in dimension D has cohomogeneity [D/2]; the metric components depend on the radial coordinate r and [D/2] latitude variables \mu_i that are subject to the constraint \sum_i \mu_i^2=1. We find a coordinate reparameterisation in which the \mu_i variables are replaced by [D/2]-1 unconstrained coordinates y_\alpha, and having the remarkable property that the Kerr-AdS metric becomes diagonal in the coordinate differentials dy_\alpha. The coordinates r and y_\alpha now appear in a very symmetrical way in the metric, leading to an immediate generalisation in which we can introduce [D/2]-1 NUT parameters. We find that (D-5)/2 are non-trivial in odd dimensions, whilst (D-2)/2 are non-trivial in even dimensions. This gives the most general Kerr-NUT-AdS metric in DD dimensions. We find that in all dimensions D\ge4 there exist discrete symmetries that involve inverting a rotation parameter through the AdS radius. These symmetries imply that Kerr-NUT-AdS metrics with over-rotating parameters are equivalent to under-rotating metrics. We also consider the BPS limit of the Kerr-NUT-AdS metrics, and thereby obtain, in odd dimensions and after Euclideanisation, new families of Einstein-Sasaki metrics.Comment: Latex, 24 pages, minor typos correcte

    Killing Spinors for the Bosonic String

    Full text link
    We obtain the effective action for the bosonic string with arbitrary Yang-Mills fields, up to the \alpha' order, in general dimensions. The form of the action is determined by the requirement that the action admit well-defined Killing spinor equations, whose projected integrability conditions give rise to the full set of equations of motion. The success of the construction suggests that the hidden "pseudo-supersymmetry" associated with the Killing spinor equations may be a property of the bosonic string itself.Comment: 9 page
    corecore