14 research outputs found

    Characterizing the Urban Mine—Challenges of Simplified Chemical Analysis of Anthropogenic Mineral Residues

    Get PDF
    Anthropogenic mineral residues are characterized by their material complexity and heterogeneity, which pose challenges to the chemical analysis of multiple elements. However, creating an urban mine knowledge database requires data using affordable and simple chemical analysis methods, providing accurate and valid results. In this study, we assess the applicability of simplified multi-element chemical analysis methods for two anthropogenic mineral waste matrices: (1) lithium-ion battery ash that was obtained from thermal pre-treatment and (2) rare earth elements (REE)-bearing iron-apatite ore from a Swedish tailing dam. For both samples, simplified methods comprising ‘inhouse’ wet-chemical analysis and energy-dispersive Xray fluorescence (ED-XRF) spectrometry were compared to the results of the developed matrix-specific validated methods. Simplified wet-chemical analyses showed significant differences when compared to the validated method, despite proven internal quality assurance, such as verification of sample homogeneity, precision, and accuracy. Matrix-specific problems, such as incomplete digestion and overlapping spectra due to similar spectral lines (ICP-OES) or element masses (ICP-MS), can result in quadruple overestimations or underestimation by half when compared to the reference value. ED-XRF analysis proved to be applicable as semi-quantitative analysis for elements with mass fractions higher than 1000 ppm and an atomic number between Z 12 and Z 50. For elements with low mass fractions, ED-XRF analysis performed poorly and showed deviations of up to 90 times the validated value. Concerning all the results, we conclude that the characterization of anthropogenic mineral residues is prone to matrix-specific interferences, which have to be addressed with additional quality assurance measures.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität BerlinEC/H2020/641999/EU/ Prospecting Secondary raw materials in the Urban mine and Mining waste/ProSU

    Long-Term Strategies for Increased Recycling of Automotive Aluminum and Its Alloying Elements

    No full text
    Aluminum recycling currently occurs in a cascading fashion, where some alloys, used in a limited number of applications, absorb most of the end-of-life scrap. An expected increase in scrap supply in coming decades necessitates restructuring of the aluminum cycle to open up new recycling paths for alloys and avoid a potential scrap surplus. This paper explores various interventions in end-of-life management and recycling of automotive aluminum, using a dynamic substance flow analysis model of aluminum and its alloying elements with resolution on component and alloy level (<i>vehicle-component-alloy-element</i> model). It was found that increased component dismantling before vehicle shredding can be an effective, so far underestimated, intervention in the medium term, especially if combined with development of safety-relevant components such as wheels from secondary material. In the long term, automatic alloy sorting technologies are most likely required, but could at the same time reduce the need for magnesium removal in refining. Cooperation between the primary and secondary aluminum industries, the automotive industry, and end-of-life vehicle dismantlers is therefore essential to ensure continued recycling of automotive aluminum and its alloying elements

    The Global Anthropogenic Gallium System: Determinants of Demand, Supply and Efficiency Improvements

    No full text
    Gallium has been labeled as a critical metal due to rapidly growing consumption, importance for low-carbon technologies such as solid state lighting and photovoltaics, and being produced only as a byproduct of other metals (mainly aluminum). The global system of primary production, manufacturing, use and recycling has not yet been described or quantified in the literature. This prevents predictions of future demand, supply and possibilities for efficiency improvements on a system level. We present a description of the global anthropogenic gallium system and quantify the system using a combination of statistical data and technical parameters. We estimated that gallium was produced from 8 to 21% of alumina plants in 2011. The most important applications of gallium are NdFeB permanent magnets, integrated circuits and GaAs/GaP-based light-emitting diodes, demanding 22–37%, 16–27%, and 11–21% of primary metal production, respectively. GaN-based light-emitting diodes and photovoltaics are less important, both with 2–6%. We estimated that 120–170 tons, corresponding to 40–60% of primary production, ended up in production wastes that were either disposed of or stored. While demand for gallium is expected to rise in the future, our results indicated that it is possible to increase primary production substantially with conventional technology, as well as improve the system-wide material efficiency

    Historical Penetration Patterns of Automobile Electronic Control Systems and Implications for Critical Raw Materials Recycling

    No full text
    Car electronics form a large but poorly utilized source for secondary critical raw materials (CRMs). To capitalize on this potential, it is necessary to understand the mechanism in which car electronics enter and exit the vehicle fleet over time. We analyze the historical penetration of selected car electronic control systems (ECS) in 65,475 car models sold in the past 14 years by means of statistical learning. We find that the historical penetration of ECS tends to follow S-shaped curves, however with substantial variations in penetration speed and saturation level. Although electronic functions are increasing rapidly, comfort-related ECS tend to remain below 40% penetration even after 14 years on the market. In contrast, safety regulations lead to rapid ECS penetration approaching 100%, while environmental emission regulations seem to indirectly push related ECS to a medium penetration level (e.g., growing to 60% after six years). The trend towards integration of individual ECS poses long-term challenges for car electronics dismantling and recycling. Monitoring the ECS embedded in new cars, such as carried out in this study, can inform timely updates for such strategies. The results also provide a framework for developing scenarios to identify related future CRM stocks and flows

    Byproduct Metal Availability Constrained by Dynamics of Carrier Metal Cycle: The Gallium–Aluminum Example

    No full text
    Future availability of byproduct metals is not limited by geological stocks, but by the rate of primary production of their carrier metals, which in turn depends on the development of their in-use stocks, the product lifetimes, and the recycling rates. This linkage, while recognized conceptually in past studies, has not been adequately taken into account in resource availability estimates. Here, we determine the global supply potential for gallium up to 2050 based on scenarios for the global aluminum cycle, and compare it with scenarios for gallium demand derived from a dynamic model of the gallium cycle. We found that the gallium supply potential is heavily influenced by the development of the in-use stocks and recycling rates of aluminum. With current applications, a shortage of gallium is unlikely by 2050. However, the gallium industry may need to introduce ambitious recycling- and material efficiency strategies to meet its demand. If in-use stocks of aluminum saturate or decline, a shift to other gallium sources such as zinc or coal fly ash may be required

    Global Carbon Benefits of Material Substitution in Passenger Cars until 2050 and the Impact on the Steel and Aluminum Industries

    No full text
    Light-weighting of passenger cars using high-strength steel or aluminum is a common emissions mitigation strategy. We provide a first estimate of the global impact of light-weighting by material substitution on GHG emissions from passenger cars and the steel and aluminum industries until 2050. We develop a dynamic stock model of the global car fleet and combine it with a dynamic MFA of the associated steel, aluminum, and energy supply industries. We propose four scenarios for substitution of conventional steel with high-strength steel and aluminum at different rates over the period 2010–2050. We show that light-weighting of passenger cars can become a “gigaton solution”: Between 2010 and 2050, persistent light-weighting of passenger cars can, under optimal conditions, lead to cumulative GHG emissions savings of 9–18 gigatons CO<sub>2</sub>-eq compared to development business-as-usual. Annual savings can be up to 1 gigaton per year. After 2030, enhanced material recycling can lead to further reductions: closed-loop metal recycling in the automotive sector may reduce cumulative emissions by another 4–6 gigatons CO<sub>2</sub>-eq. The effectiveness of emissions mitigation by material substitution significantly depends on how the recycling system evolves. At present, policies focusing on tailpipe emissions and life cycle assessments of individual cars do not consider this important effect

    Elaborating the History of Our Cementing Societies: An in-Use Stock Perspective

    No full text
    Modern cities and societies are built fundamentally based on cement and concrete. The global cement production has risen sharply in the past decades due largely to urbanization and construction. Here we deployed a top-down dynamic material flow analysis (MFA) model to quantify the historical development of cement in-use stocks in residential, nonresidential, and civil engineering sectors of all world countries. We found that global cement production spreads unevenly among 184 countries, with China dominating the global production and consumption after the 1990s. Nearly all countries have shown an increasing trend of per capita cement in-use stock in the past century. The present per capita cement in-use stocks vary from 10 to 40 tonnes in major industrialized and transiting countries and are below 10 tonnes in developing countries. Evolutionary modes identified from historical patterns suggest that per capita in-use cement stock growth generally complies with an S-shape curve and relates closely to affluence and urbanization of a country, but more in-depth and bottom-up investigations are needed to better understand socioeconomic drivers behind stock growth. These identified in-use stock patterns can help us better estimate future demand of cement, explore strategies for emissions reduction in the cement industry, and inform CO<sub>2</sub> uptake potentials of cement based products and infrastructure in service

    Stocks, Flows, and Distribution of Critical Metals in Embedded Electronics in Passenger Vehicles

    No full text
    One of the major applications of critical metals (CMs) is in electrical and electronic equipment (EEE), which is increasingly embedded in other products, notably passenger vehicles. However, recycling strategies for future CM quantities in end-of-life vehicles (ELVs) are poorly understood, mainly due to a limited understating of the complexity of automotive embedded EEE. We introduce a harmonization of the network structure of automotive electronics that enables a comprehensive quantification of CMs in all embedded EEE in a vehicle. This network is combined with a material flow analysis along the vehicle lifecycle in Switzerland to quantify the stocks and flows of Ag, Au, Pd, Ru, Dy, La, Nd, and Co in automotive embedded EEE. In vehicles in use, we calculated 5<sub>–2</sub><sup>+3</sup> t precious metals in controllers embedded in all vehicle types and 220<sub>–60</sub><sup>+90</sup> t rare earth elements (REE); found mainly in five electric motors: alternator, starter, radiator-fan and electronic power steering motor embedded in conventional passenger vehicles and drive motor/generator embedded in hybrid and electric vehicles. Dismantling these devices before ELV shredding, as well as postshredder treatment of automobile shredder residue may increase the recovery of CMs from ELVs. Environmental and economic implications of such recycling strategies must be considered

    Carbon Emissions of Infrastructure Development

    No full text
    Identifying strategies for reconciling human development and climate change mitigation requires an adequate understanding of how infrastructures contribute to well-being and greenhouse gas emissions. While direct emissions from infrastructure use are well-known, information about indirect emissions from their construction is highly fragmented. Here, we estimated the carbon footprint of the existing global infrastructure stock in 2008, assuming current technologies, to be 122 (−20/+15) Gt CO<sub>2</sub>. The average per-capita carbon footprint of infrastructures in industrialized countries (53 (±6) t CO<sub>2</sub>) was approximately 5 times larger that that of developing countries (10 (±1) t CO<sub>2</sub>). A globalization of Western infrastructure stocks using current technologies would cause approximately 350 Gt CO<sub>2</sub> from materials production, which corresponds to about 35–60% of the remaining carbon budget available until 2050 if the average temperature increase is to be limited to 2 °C, and could thus compromise the 2 °C target. A promising but poorly explored mitigation option is to build new settlements using less emissions-intensive materials, for example by urban design; however, this strategy is constrained by a lack of bottom-up data on material stocks in infrastructures. Infrastructure development must be considered in post-Kyoto climate change agreements if developing countries are to participate on a fair basis

    Variability and Bias in Measurements of Metals Mass Fractions in Automobile Shredder Residue

    No full text
    The treatment of end-of-life vehicles generates large amounts of automobile shredder residue (ASR), a potential source of recycled metals. Reliable measurement methods are required to determine the composition of ASR and evaluate the resource potential. We reported on research undertaken to investigate bias and variability in the process of measuring trace metals in ASR. Two primary samples of shredder light fraction (SLF) underwent extensive physical sample preparation and chemical analysis. The samples were spiked to control random variations and systematic effects during physical sample preparation. Chemical analysis was conducted using wavelength-dispersive X-ray fluorescence spectrometry (WD-XRF), a fully validated wet-chemical analysis, and a wet-chemical analysis representing an &ldquo;in-house&rdquo; lab procedure. Physical sample preparation introduced deviations up to a factor of 2, likely due to preferential losses and heterogeneity. Deviations for WD-XRF measurements of elements were in the range +100%/&minus;50%. In-house chemical analysis produced results that were in good agreement with validated results for Al, Fe and Sn, but led to biased results or high variability for Cd, Dy, La, Nd, Pb, Pd, Pt and Sb. To improve the chemical analysis of trace metals in SLF, we recommended reducing particle size to less than 0.1 mm before chemical analysis and using a larger number of repeated digestions
    corecore