46 research outputs found

    Neuropsychological parameters indexing executive processes are associated with independent components of ERPs

    Get PDF
    AbstractLesion studies have indicated that at least the three executive processes can be differentiated in the frontal lobe: Energization, monitoring and task setting. Event related potentials (ERPs) in Go/NoGo tasks have been widely used in studying executive processes. In this study, ERPs were obtained from EEG recorded during performance of a cued Go/NoGo task. The Contingent Negative Variation (CNV) and P3NoGo waves were decomposed into four independent components (ICs), by applying Independent Component Analysis (ICA) to a collection of ERPs from 193 healthy individuals. The components were named IC CNVearly, IC CNVlate, IC P3NoGoearly and IC P3NoGolate according to the conditions and time interval in which they occurred. A sub-group of 28 individuals was also assessed with neuropsychological tests. The test parameters were selected on the basis of studies demonstrating their sensitivity to executive processes as defined in the ROtman-Baycrest Battery for Investigating Attention (ROBBIA) model. The test scores were categorized into the domain scores of energization, monitoring and task setting and correlated with the amplitudes of the individual ICs from the sub-group of 28 individuals. The energization domain correlated with the IC CNVlate and IC P3NoGoearly. The monitoring domain correlated with the IC P3NoGolate, while the task setting domain correlated with the IC CNVlate. The IC CNVearly was not correlated with any of the neuropsychological domain scores. The correlations between the domains and ICs remained largely unchanged when controlling for full-scale IQ. This is the first study to demonstrate that executive processes, as indexed by neuropsychological test parameters, are associated with particular event-related potentials in a cued Go/NoGo paradigm

    Cortical thickness changes after computerized working memory training in patients with mild cognitive impairment

    Get PDF
    Background: Adaptive computerized working memory (WM) training has shown favorable effects on cerebral cortical thickness as compared to non-adaptive training in healthy individuals. However, knowledge of WM training-related morphological changes in mild cognitive impairment (MCI) is limited. Objective: The primary objective of this double-blind randomized study was to investigate differences in longitudinal cortical thickness trajectories after adaptive and non-adaptive WM training in patients with MCI. We also investigated the genotype effects on cortical thickness trajectories after WM training combining these two training groups using longitudinal structural magnetic resonance imaging (MRI) analysis in Freesurfer. Method: Magnetic resonance imaging acquisition at 1.5 T were performed at baseline, and after four- and 16-weeks post training. A total of 81 individuals with MCI accepted invitations to undergo 25 training sessions over 5 weeks. Longitudinal Linear Mixed effect models investigated the effect of adaptive vs. non-adaptive WM training. The LME model was fitted for each location (vertex). On all statistical analyzes, a threshold was applied to yield an expected false discovery rate (FDR) of 5%. A secondary LME model investigated the effects of LMX1A and APOE-ε4 on cortical thickness trajectories after WM training. Results: A total of 62 participants/patients completed the 25 training sessions. Structural MRI showed no group difference between the two training regimes in our MCI patients, contrary to previous reports in cognitively healthy adults. No significant structural cortical changes were found after training, regardless of training type, across all participants. However, LMX1A-AA carriers displayed increased cortical thickness trajectories or lack of decrease in two regions post-training compared to those with LMX1A-GG/GA. No training or training type effects were found in relation to the APOE-ε4 gene variants. Conclusion: The MCI patients in our study, did not have improved cortical thickness after WM training with either adaptive or non-adaptive training. These results were derived from a heterogeneous population of MCI participants. The lack of changes in the cortical thickness trajectory after WM training may also suggest the lack of atrophy during this follow-up period. Our promising results of increased cortical thickness trajectory, suggesting greater neuroplasticity, in those with LMX1A-AA genotype need to be validated in future trials.publishedVersio

    Working Memory Training in Amnestic and Non-amnestic Patients With Mild Cognitive Impairment: Preliminary Findings From Genotype Variants on Training Effects

    Get PDF
    Working memory training (WMT) effects may be modulated by mild cognitive impairment (MCI) subtypes, and variations in APOE-epsilon (APOE-ε) and LMX1A genotypes. Sixty-one individuals (41 men/20 women, mean age 66 years) diagnosed with MCI (31 amnestic/30 non-amnestic) and genotyped for APOE-ε and LMX1A completed 4 weeks/20–25 sessions of WMT. Cognitive functions were assessed before, 4 weeks and 16 weeks after WMT. Except for Processing Speed, the non-amnestic MCI group (naMCI) outperformed the amnestic MCI (aMCI) group in all cognitive domains across all time-points. At 4 weeks, working memory function improved in both groups (p < 0.0001), but at 16 weeks the effects only remained in the naMCI group. Better performance was found after training for the naMCI patients with LMX1A-AA genotype and for the APOE-ε4 carriers. Only the naMCI-APOE-ε4 group showed improved Executive Function at 16 weeks. WMT improved working memory and some non-trained cognitive functions in individuals with MCI. The naMCI group had greater training gain than aMCI group, especially in those with LMX1A-AA genotype and among APOE-ε4-carriers. Further research with larger sample sizes for the subgroups and longer follow-up evaluations is warranted.publishedVersio

    Adaptive Computerized Working Memory Training in Patients With Mild Cognitive Impairment. A Randomized Double-Blind Active Controlled Trial

    Get PDF
    ObjectiveWe investigated if a 5-week computerized adaptive working memory training program (Cogmed®) of 20 to 25 sessions would be effective in improving the working memory capacity and other neuropsychological functions compared to a non-adaptive working memory training program (active-controlled) in adult patients with mild cognitive impairment (MCI).MethodsThis randomized double-blinded active control trial included 68 individuals aged 43 to 88 years, 45 men and 23 women, who were diagnosed with MCI at four Memory clinics. The study sample was randomized by block randomization to either adaptive or non-adaptive computerized working memory training. All participants completed the training, and were assessed with a comprehensive neuropsychological test battery before the intervention, and at 1 and 4 months after training.ResultsCompared to the non-adaptive training group, the adaptive training group did not show significantly greater improvement on the main outcome of working memory performance at 1 and 4 months after training.ConclusionNo difference were found between the two types of training on the primary outcome of working memory, or on secondary outcomes of cognitive function domains, in this sample of MCI patients. Hence, the hypothesis that the adaptive training program would lead to greater improvements compared to the non-adaptive training program was not supported. Within group analyses was not performed due to the stringent RCT design

    Cognitive Profiles and Atrophy Ratings on MRI in Senior Patients With Mild Cognitive Impairment

    Get PDF
    In this cross-sectional study, we sought to describe cognitive and neuroimaging profiles of Memory clinic patients with Mild Cognitive Impairment (MCI). 51 MCI patients and 51 controls, matched on age, sex, and socio-economic status (SES), were assessed with an extensive neuropsychological test battery that included a measure of intelligence (General Ability Index, “GAI,” from WAIS-IV), and structural magnetic resonance imaging (MRI). MCI subtypes were determined after inclusion, and z-scores normalized to our control group were generated for each cognitive domain in each MCI participant. MR-images were scored by visual rating scales. MCI patients performed significantly worse than controls on 23 of 31 cognitive measures (Bonferroni corrected p = 0.001), and on 8 of 31 measures after covarying for intelligence (GAI). Compared to nonamnestic MCI patients, amnestic MCI patients had lower test results in 13 of 31 measures, and 5 of 31 measures after co-varying for GAI. Compared to controls, the MCI patients had greater atrophy on Schelten's Medial temporal lobe atrophy score (MTA), especially in those with amnestic MCI. The only structure-function correlation that remained significant after correction for multiple comparisons was the MTA—long delay recall domain. Intelligence operationalized as GAI appears to be an important moderator of the neuropsychological outcomes. Atrophy of the medial temporal lobe, based on MTA scores, may be a sensitive biomarker for the functional episodic memory deficits associated with MCI
    corecore