23 research outputs found

    Climate Change Promotes the Emergence of Serious Disease Outbreaks of Filarioid Nematodes

    Get PDF
    Filarioid parasites represent major health hazards with important medical, veterinary, and economic implications, and considerable potential to affect the everyday lives of tens of millions of people globally (World Health Organization, 2007). Scenarios for climate change vary latitudinally and regionally and involve direct and indirect linkages for increasing temperature and the dissemination, amplification, and invasiveness of vector-borne parasites. High latitude regions are especially influenced by global climate change and thus may be prone to altered associations and dynamics for complex host-pathogen assemblages and emergence of disease with cascading effects on ecosystem structure. Although the potential for substantial ecological perturbation has been identified, few empirical observations have emanated from systems across the Holarctic. Coincidental with decades of warming, and anomalies of high temperature and humidity in the sub-Arctic region of Fennoscandia, the mosquito-borne filarioid nematode Setaria tundra is now associated with emerging epidemic disease resulting in substantial morbidity and mortality for reindeer and moose. We describe a host-parasite system that involves reindeer, arthropods, and nematodes, which may contribute as a factor to ongoing declines documented for this ungulate species across northern ecosystems. We demonstrate that mean summer temperatures exceeding 14°C drive the emergence of disease due to S. tundra. An association between climate and emergence of filarioid parasites is a challenge to ecosystem services with direct effects on public health, sustainability of free-ranging and domestic ungulates, and ultimately food security for subsistence cultures at high latitudes

    Nestedness of Ectoparasite-Vertebrate Host Networks

    Get PDF
    Determining the structure of ectoparasite-host networks will enable disease ecologists to better understand and predict the spread of vector-borne diseases. If these networks have consistent properties, then studying the structure of well-understood networks could lead to extrapolation of these properties to others, including those that support emerging pathogens. Borrowing a quantitative measure of network structure from studies of mutualistic relationships between plants and their pollinators, we analyzed 29 ectoparasite-vertebrate host networks—including three derived from molecular bloodmeal analysis of mosquito feeding patterns—using measures of nestedness to identify non-random interactions among species. We found significant nestedness in ectoparasite-vertebrate host lists for habitats ranging from tropical rainforests to polar environments. These networks showed non-random patterns of nesting, and did not differ significantly from published estimates of nestedness from mutualistic networks. Mutualistic and antagonistic networks appear to be organized similarly, with generalized ectoparasites interacting with hosts that attract many ectoparasites and more specialized ectoparasites usually interacting with these same “generalized” hosts. This finding has implications for understanding the network dynamics of vector-born pathogens. We suggest that nestedness (rather than random ectoparasite-host associations) can allow rapid transfer of pathogens throughout a network, and expand upon such concepts as the dilution effect, bridge vectors, and host switching in the context of nested ectoparasite-vertebrate host networks

    Latitudinal diversity gradients in New World bats: are they a consequence of niche conservatism?

    Get PDF
    The increase in species diversity from the Poles to the Equator is a major biogeographic pattern, but the mechanisms underlying it remain obscure. Our aim is to contribute to their clarification by describing the latitudinal gradients in species richness and in evolutionary age of species of New World bats, and testing if those patterns may be explained by the niche conservatism hypothesis. Maps of species ranges were used to estimate species richness in a 100 x 100 km grid. Root distances in a molecular phylogeny were used as a proxy for the age of species, and the mean root distance of the species in each cell of the grid was estimated. Generalised additive models were used to relate latitude with both species richness and mean root distance. This was done for each of the three most specious bat families and for all Chiroptera combined. Species richness increases towards the Equator in the whole of the Chiroptera and in the Phyllostomidae and Molossidae, families that radiated in the tropics, but the opposite trend is observed in the Vespertilionidae, which has a presumed temperate origin. In the whole of the Chiroptera, and in the three main families, there were more basal species in the higher latitudes, and more derived species in tropical areas. In general, our results were not consistent with the predictions of niche conservatism. Tropical niche conservatism seems to keep bat clades of tropical origin from colonizing temperate zones, as they lack adaptations to survive cold winters, such as the capacity to hibernate. However, the lower diversity of Vespertilionidae in the Neotropics is better explained by competition with a diverse pre-existing community of bats than by niche conservatism.MJRP was supported by Foundation for Science and Technology, Portugal (www.fct.pt), fellowship SFRH/BD/19620/2004 and SFRH/BPD/ 72845/2010. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank J. P. Granadeiro and R. Lemos for advice on statistical methods, J. A. Diniz-Filho for support with SAM software, and M. A. Dias and P. E. Cardoso for help with the distributional maps. O. R. P. Bininda-Emonds kindly gave us access to the Chiroptera species-level phylogeny. Bat data was provided by NatureServe in collaboration with Bruce Patterson, Wes Sechrest, Marcelo Tognelli, Gerardo Ceballos, the Nature Conservancy-Migratory Bird Program, Conservation International-CABS, World Wildlife Fund-US, and Environment Canada-WILDSPACE - http://www.natureserve.org/infonatura.publishe
    corecore