305 research outputs found

    Cytoprotective mechanisms in cultured cardiomyocytes

    Get PDF
    Tumor necrosis factor-α (TNF-α), a potent cytokine mainly secreted by macrophages exerts pleiotropic effects on different cell types. However, the intracellular mediators of its action are not yet well characterized. To get an insight into endogenous cytoprotective mechanisms, we developed an in vitro model based on cultured cardiomyocytes treated with TNF-α at which we examined gene expression of heat shock proteins (HSP-27, HSP-70 and ubiquitin). Cardiomyocytes were isolated from the hearts of 18 day old fetal mice by enzymatic dissociation and grown in minimum essential medium containing 10% fetal calf serum. Spontaneously contractile cells were serum deprived for 24 h and treated with TNF-α(25 ng/ml) for 1, 2, 4, 6, 8, 12, and 24 h After each incubation, cells were processed to extract total proteins for Western and total RNA for Northern blot analyses. TNF-α induced arrhythmias and cessation of spontaneous contractions in a concentration and time dependent manner. Steady state (ubiquitin) or undetectable mRNA levels (HSP-27, HSP-70) were drastically induced (> 4 fold for all three genes vs untreated control cells) by TNF-α, reaching maximal values between 6-8 h of stimulation. Thereafter, the expression of these stress genes declined but remained elevated as compared to control. By Western blot analysis, we found increased multiple bands of ubiquitin protein conjugates in TNF-α treated cells whereas no significant change in HSP-27 protein accumulation until 12 h was observed as compared to control. 24 h of TNF-α incubation resulted in partial cellular necrosis. Our results indicate that TNF-α induces in cardiomyocytes transiently gene expression for cytoprotective molecules like HSP-27, HSP-70 and ubiquitin, suggesting these stress proteins to participate in subsequent defense mechanisms, for example in postischemic myocardial recovery

    Fermi Arc of Metallic Diagonal Stripes in High Tc Cuprates

    Full text link
    Spectral weight is investigated for metallic diagonal stripe state in two dimensional Hubbard model, and Fermi arc observed by angle-resolved photoemission spectroscopy on LSCO is discussed. The Fermi arc coming from the mid-gap state of diagonal stripe appears near (π2,π2)(\frac{\pi}{2},\frac{\pi}{2}) and equivalent position in the reciprocal space, and the gap opens below the mid-gap state. We show how these spectral weight structure depends on the phasing of stripes, i.e., site-centered or bond-centered stripes.Comment: 4 figure

    Ion detection in the photoionization of a Rb Bose-Einstein condensate

    Full text link
    Two-photon ionization of Rubidium atoms in a magneto-optical trap and a Bose-Einstein condensate (BEC) is experimentally investigated. Using 100 ns laser pulses, we detect single ions photoionized from the condenstate with a 35(10)% efficiency. The measurements are performed using a quartz cell with external electrodes, allowing large optical access for BECs and optical lattices.Comment: 14 pages, 7 figure

    Real space renormalization group approach to the 2d antiferromagnetic Heisenberg model

    Full text link
    The low energy behaviour of the 2d antiferromagnetic Heisenberg model is studied in the sector with total spins S=0,1,2S=0,1,2 by means of a renormalization group procedure, which generates a recursion formula for the interaction matrix ΔS(n+1)\Delta_S^{(n+1)} of 4 neighbouring "nn clusters" of size 2n×2n2^n\times 2^n, n=1,2,3,...n=1,2,3,... from the corresponding quantities ΔS(n)\Delta_S^{(n)}. Conservation of total spin SS is implemented explicitly and plays an important role. It is shown, how the ground state energies ES(n+1)E_S^{(n+1)}, S=0,1,2S=0,1,2 approach each other for increasing nn, i.e. system size. The most relevant couplings in the interaction matrices are generated by the transitions between the ground states S,m;n+1>|S,m;n+1> (m=S,...,Sm=-S,...,S) on an (n+1)(n+1)-cluster of size 2n+1×2n+12^{n+1}\times 2^{n+1}, mediated by the staggered spin operator SqS_q^*Comment: 18 pages, 8 figures, RevTe

    One-Dimensional Electron Liquid in an Antiferromagnetic Environment: Spin Gap from Magnetic Correlations

    Full text link
    We study a one-dimensional electron liquid coupled by a weak spin-exchange interaction to an antiferromagnetic spin-S ladder with n legs. A perturbative renormalization group analysis in the semiclassical limit reveals the opening of a spin gap, driven by the local magnetic correlations on the ladder. The effect, which we argue is present for any gapful ladder or gapless ladder with nS1nS\gg 1, is enhanced by the repulsive interaction among the conduction electrons but is insensitive to the sign of the spin exchange interaction with the ladder. Possible implications for the striped phases of the cuprates are discussed.Comment: 5 pages, 1 figure, to appear in Phys. Rev. Let

    Implications of Charge Ordering for Single-Particle Properties of High-Tc Superconductors

    Full text link
    The consequences of disordered charge stripes and antiphase spin domains for the properties of the high-temperature superconductors are studied. We focus on angle-resolved photoemission spectroscopy and optical conductivity, and show that the many unusual features of the experimentally observed spectra can be understood naturally in this way. This interpretation of the data, when combined with evidence from neutron scattering and NMR, suggests that disordered and fluctuating stripe phases are a common feature of high-temperature superconductors.Comment: 4 pages, figures by fax or mai

    Observation of mesoscopic crystalline structures in a two-dimensional Rydberg gas

    Get PDF
    The ability to control and tune interactions in ultracold atomic gases has paved the way towards the realization of new phases of matter. Whereas experiments have so far achieved a high degree of control over short-ranged interactions, the realization of long-range interactions would open up a whole new realm of many-body physics and has become a central focus of research. Rydberg atoms are very well-suited to achieve this goal, as the van der Waals forces between them are many orders of magnitude larger than for ground state atoms. Consequently, the mere laser excitation of ultracold gases can cause strongly correlated many-body states to emerge directly when atoms are transferred to Rydberg states. A key example are quantum crystals, composed of coherent superpositions of different spatially ordered configurations of collective excitations. Here we report on the direct measurement of strong correlations in a laser excited two-dimensional atomic Mott insulator using high-resolution, in-situ Rydberg atom imaging. The observations reveal the emergence of spatially ordered excitation patterns in the high-density components of the prepared many-body state. They have random orientation, but well defined geometry, forming mesoscopic crystals of collective excitations delocalised throughout the gas. Our experiment demonstrates the potential of Rydberg gases to realise exotic phases of matter, thereby laying the basis for quantum simulations of long-range interacting quantum magnets.Comment: 10 pages, 7 figure
    corecore