308 research outputs found

    State of the art transparency: lessons from Europe and North America

    Get PDF
    This Special Issue of the Journal of Risk Research was initiated to increase the evidence base supporting critical understanding of the use and impacts of transparency as a policy tool in risk management and regulation in Europe and North America. The lead research articles and perspectives were initially presented at a two-day workshop supported by the Journal of Risk Research and its publisher Taylor and Francis, which took place in Lavandou, Provence, 19th - 20th June 2014. In this editorial we introduce the motivations for the special issue and offer a brief summary of the contribution of each article highlighting key intersections and points of concurrenc

    Mechanisms for Stable Sonoluminescence

    Get PDF
    A gas bubble trapped in water by an oscillating acoustic field is expected to either shrink or grow on a diffusive timescale, depending on the forcing strength and the bubble size. At high ambient gas concentration this has long been observed in experiments. However, recent sonoluminescence experiments show that in certain circumstances when the ambient gas concentration is low the bubble can be stable for days. This paper presents mechanisms leading to stability which predict parameter dependences in agreement with the sonoluminescence experiments.Comment: 4 pages, 3 figures on request (2 as .ps files

    Sonoluminescing air bubbles rectify argon

    Get PDF
    The dynamics of single bubble sonoluminescence (SBSL) strongly depends on the percentage of inert gas within the bubble. We propose a theory for this dependence, based on a combination of principles from sonochemistry and hydrodynamic stability. The nitrogen and oxygen dissociation and subsequent reaction to water soluble gases implies that strongly forced air bubbles eventually consist of pure argon. Thus it is the partial argon (or any other inert gas) pressure which is relevant for stability. The theory provides quantitative explanations for many aspects of SBSL.Comment: 4 page

    Bubble Shape Oscillations and the Onset of Sonoluminescence

    Get PDF
    An air bubble trapped in water by an oscillating acoustic field undergoes either radial or nonspherical pulsations depending on the strength of the forcing pressure. Two different instability mechanisms (the Rayleigh--Taylor instability and parametric instability) cause deviations from sphericity. Distinguishing these mechanisms allows explanation of many features of recent experiments on sonoluminescence, and suggests methods for finding sonoluminescence in different parameter regimes.Comment: Phys. Rev. Lett., in pres

    Nature of Sonoluminescence: Noble Gas Radiation Excited by Hot Electrons in "Cold" Water

    Get PDF
    We show that strong electric fields occurring in water near the surface of collapsing gas bubbles because of the flexoelectric effect can provoke dynamic electric breakdown in a micron-size region near the bubble and consider the scenario of the SBSL. The scenario is: (i) at the last stage of incomplete collapse of the bubble the gradient of pressure in water near the bubble surface has such a value and sign that the electric field arising from the flexoelectric effect exceeds the threshold field of the dynamic electrical breakdown of water and is directed to the bubble center; (ii) mobile electrons are generated because of thermal ionization of water molecules near the bubble surface; (iii) these electrons are accelerated in ''cold'' water by the strong electric fields; (iv) these hot electrons transfer noble gas atoms dissolved in water to high-energy excited states and optical transitions between these states produce SBSL UV flashes in the trasparency window of water; (v) the breakdown can be repeated several times and the power and duration of the UV flash are determined by the multiplicity of the breakdowns. The SBSL spectrum is found to resemble a black-body spectrum where temperature is given by the effective temperature of the hot electrons. The pulse energy and some other characteristics of the SBSL are found to be in agreement with the experimental data when realistic estimations are made.Comment: 11 pages (RevTex), 1 figure (.ps

    Statistics of transition times, phase diffusion and synchronization in periodically driven bistable systems

    Get PDF
    The statistics of transitions between the metastable states of a periodically driven bistable Brownian oscillator are investigated on the basis of a two-state description by means of a master equation with time-dependent rates. The results are compared with extensive numerical simulations of the Langevin equation for a sinusoidal driving force. Very good agreement is achieved both for the counting statistics of the number of transitions and the residence time distribution of the process in either state. The counting statistics corroborate in a consistent way the interpretation of stochastic resonance as a synchronisation phenomenon for a properly defined generalized Rice phase.Comment: 15 pages, 9 figure

    Effects of Bulk Viscosity in Non-linear Bubble Dynamics

    Full text link
    The non-linear bubble dynamics equations in a compressible liquid have been modified considering the effects of compressibility of both the liquid and the gas at the bubble interface. A new bubble boundary equation has been derived, which includes a new term resulted from the liquid bulk viscosity effects. The influence of this term has been numerically investigated considering the effects of water vapor and chemical reactions on the bubble evolution. The results clearly indicate that the new term has an important damping role at the collapse, so that its consideration decreases the amplitude of the bubble rebounds after the collapse. This damping feature is more remarkable for higher deriving pressures.Comment: 4 pages, 7 figure

    Brillouin propagation modes in optical lattices: Interpretation in terms of nonconventional stochastic resonance

    Get PDF
    We report the first direct observation of Brillouin-like propagation modes in a dissipative periodic optical lattice. This has been done by observing a resonant behavior of the spatial diffusion coefficient in the direction corresponding to the propagation mode with the phase velocity of the moving intensity modulation used to excite these propagation modes. Furthermore, we show theoretically that the amplitude of the Brillouin mode is a nonmonotonic function of the strength of the noise corresponding to the optical pumping, and discuss this behavior in terms of nonconventional stochastic resonance

    Gauge Theories with Cayley-Klein SO(2;j)SO(2;j) and SO(3;j)SO(3;j) Gauge Groups

    Get PDF
    Gauge theories with the orthogonal Cayley-Klein gauge groups SO(2;j)SO(2;j) and SO(3;j)SO(3;{\bf j}) are regarded. For nilpotent values of the contraction parameters j{\bf j} these groups are isomorphic to the non-semisimple Euclid, Newton, Galilei groups and corresponding matter spaces are fiber spaces with degenerate metrics. It is shown that the contracted gauge field theories describe the same set of fields and particle mass as SO(2),SO(3)SO(2), SO(3) gauge theories, if Lagrangians in the base and in the fibers all are taken into account. Such theories based on non-semisimple contracted group provide more simple field interactions as compared with the initial ones.Comment: 14 pages, 5 figure

    The Sound of Sonoluminescence

    Full text link
    We consider an air bubble in water under conditions of single bubble sonoluminescence (SBSL) and evaluate the emitted sound field nonperturbatively for subsonic gas-liquid interface motion. Sound emission being the dominant damping mechanism, we also implement the nonperturbative sound damping in the Rayleigh-Plesset equation for the interface motion. We evaluate numerically the sound pulse emitted during bubble collapse and compare the nonperturbative and perturbative results, showing that the usual perturbative description leads to an overestimate of the maximal surface velocity and maximal sound pressure. The radius vs. time relation for a full SBSL cycle remains deceptively unaffected.Comment: 25 pages; LaTex and 6 attached ps figure files. Accepted for publication in Physical Review
    corecore