8,861 research outputs found

    Event Recognition Using Signal Spectrograms in Long Pulse Experiments

    Get PDF
    As discharge duration increases, real-time complex analysis of the signal becomes more important. In this context, data acquisition and processing systems must provide models for designing experiments which use event oriented plasma control. One example of advanced data analysis is signal classification. The off-line statistical analysis of a large number of discharges provides information to develop algorithms for the determination of the plasma parameters from measurements of magnetohydrodinamic waves, for example, to detect density fluctuations induced by the Alfvén cascades using morphological patterns. The need to apply different algorithms to the signals and to address different processing algorithms using the previous results necessitates the use of an event-based experiment. The Intelligent Test and Measurement System platform is an example of architecture designed to implement distributed data acquisition and real-time processing systems. The processing algorithm sequence is modeled using an event-based paradigm. The adaptive capacity of this model is based on the logic defined by the use of state machines in SCXML. The Intelligent Test and Measurement System platform mixes a local multiprocessing model with a distributed deployment of services based on Jini

    Confinement of electrons in layered metals

    Full text link
    We analyze the out of plane hopping in models of layered systems where the in--plane properties deviate from Landau's theory of a Fermi liquid. We show that the hopping term acquires a non trivial energy dependence, due to the coupling to in plane excitations, and can be either relevant or irrelevant at low energies or temperatures. The latter is always the case if the Fermi level lies close to a saddle point in the dispersion relation.Comment: 4 pages, 1 eps figur

    1/fα1/f^\alpha noise and integrable systems

    Get PDF
    An innovative test for detecting quantum chaos based on the analysis of the spectral fluctuations regarded as a time series has been recently proposed. According to this test, the fluctuations of a fully chaotic system should exhibit 1/f noise, whereas for an integrable system this noise should obey the 1/f^2 power law. In this letter, we show that there is a family of well-known integrable systems, namely spin chains of Haldane-Shastry type, whose spectral fluctuations decay instead as 1/f^4. We present a simple theoretical justification of this fact, and propose an alternative characterization of quantum chaos versus integrability formulated directly in terms of the power spectrum of the spacings of the unfolded spectrum.Comment: 5 pages, 3 figures, RevTe

    Low pO2 selectively inhibits K channel activity in chemoreceptor cells of the mammalian carotid body

    Get PDF
    The hypothesis that changes in environmental O2 tension (pO2) could affect the ionic conductances of dissociated type I cells of the carotid body was tested. Cells were subjected to whole-cell patch clamp and ionic currents were recorded in a control solution with normal pO2 (pO2 = 150 mmHg) and 3-5 min after exposure to the same solution with a lower pO2. Na and Ca currents were unaffected by lowering pO2 to 10 mmHg, however, in all cells studied (n = 42) exposure to hypoxia produced a reversible reduction of the K current. In 14 cells exposed to a pO2 of 10 mmHg peak K current amplitude decreased to 35 +/- 8% of the control value. The effect of low pO2 was independent of the internal Ca2+ concentration and was observed in the absence of internal exogenous nucleotides. Inhibition of K channel activity by hypoxia is a graded phenomenon and in the range between 70 and 120 mmHg, which includes normal pO2 values in arterial blood, it is directly correlated with pO2 levels. Low pO2 appeared to slow down the activation time course of the K current but deactivation kinetics seemed to be unaltered. Type I cells subjected to current clamp generate large Na- and Ca-dependent action potentials repetitively. Exposure to low pO2 produces a 4-10 mV increase in the action potential amplitude and a faster depolarization rate of pacemaker potentials, which leads to an increase in the firing frequency. Repolarization rate of individual action potentials is, however, unaffected, or slightly increased. The selective inhibition of K channel activity by low pO2 is a phenomenon without precedents in the literature that explains the chemoreceptive properties of type I cells. The nature of the interaction of molecular O2 with the K channel protein is unknown, however, it is argued that a hemoglobin-like O2 sensor, perhaps coupled to a G protein, could be involved

    Ionic currents in dispersed chemoreceptor cells of the mammalian carotid body

    Get PDF
    Ionic currents of enzymatically dispersed type I and type II cells of the carotid body have been studied using the whole cell variant of the patch-clamp technique. Type II cells only have a tiny, slowly activating outward potassium current. By contrast, in every type I chemoreceptor cell studied we found (a) sodium, (b) calcium, and (c) potassium currents. (a) The sodium current has a fast activation time course and an activation threshold at approximately -40 mV. At all voltages inactivation follows a single exponential time course. The time constant of inactivation is 0.67 ms at 0 mV. Half steady state inactivation occurs at a membrane potential of approximately -50 mV. (b) The calcium current is almost totally abolished when most of the external calcium is replaced by magnesium. The activation threshold of this current is at approximately -40 mV and at 0 mV it reaches a peak amplitude in 6-8 ms. The calcium current inactivates very slowly and only decreases to 27% of the maximal value at the end of 300-ms pulses to 40 mV. The calcium current was about two times larger when barium ions were used as charge carriers instead of calcium ions. Barium ions also shifted 15-20 mV toward negative voltages the conductance vs. voltage curve. Deactivation kinetics of the calcium current follows a biphasic time course well fitted by the sum of two exponentials. At -80 mV the slow component has a time constant of 1.3 +/- 0.4 ms whereas the fast component, with an amplitude about 20 times larger than the slow component, has a time constant of 0.16 +/- 0.03 ms. These results suggest that type I cells have predominantly fast deactivating calcium channels. The slow component of the tails may represent the activity of a small population of slowly deactivating calcium channels, although other possibilities are considered. (c) Potassium current seems to be mainly due to the activity of voltage-dependent potassium channels, but a small percentage of calcium-activated channels may also exist. This current activates slowly, reaches a peak amplitude in 5-10 ms, and thereafter slowly inactivates. Inactivation is almost complete in 250-300 ms. The potassium current is reversibly blocked by tetraethylammonium. Under current-clamp conditions type I cells can spontaneously fire large action potentials. These results indicate that type I cells are excitable and have a variety of ionic conductances. We suggest a possible participation of these conductances in chemoreception

    OTELO survey: optimal emission-line flux determination with OSIRIS/GTC

    Get PDF
    Emission-line galaxies are important targets for understanding the chemical evolution of galaxies in the universe. Deep, narrow-band imaging surveys allow to detect and study the flux and the equivalent widths (EW) of the emission line studied. The present work has been developed within the context of the OTELO project, an emission line survey using the Tunable Filters (TF) of OSIRIS, the first generation instrument on the GTC 10.4m telescope located in La Palma, Spain, that will observe through selected atmospheric windows relatively free of sky emission lines. With a total survey area of 0.1 square degrees distributed in different fields, reaching a 5 \sigma depth of 10^-18 erg/cm^2/s and detecting objects of EW < 0.3 A, OTELO will be the deepest emission line survey to date. As part of the OTELO preparatory activities, the objective of this study is to determine the best combination of sampling and full width at half maximum (FWHM) for the OSIRIS tunable filters for deblending H\alpha from [NII] lines by analyzing the flux errors obtained. We simulated the OTELO data by convolving a complete set of synthetic HII galaxies in EW with different widths of the OSIRIS TFs. We estimated relative flux errors of the recovered H\alpha and [NII]6583 lines. We found that, for the red TF, a FWHM of 12 A and a sampling of 5 A is an optimal combination that allow deblending H\alpha from the [NII]6583 line with a flux error lower than 20%. This combination will allow estimating SFRs and metallicities using the H\alpha flux and the N2 method, respectively.Comment: 16 pages, 9 figures. Some authors added. Accepted for publication in PAS
    corecore