31,672 research outputs found

    Adsorption of Self-Assembled Rigid Rods on Two-Dimensional Lattices

    Get PDF
    Monte Carlo (MC) simulations have been carried out to study the adsorption on square and triangular lattices of particles with two bonding sites that, by decreasing temperature or increasing density, polymerize reversibly into chains with a discrete number of allowed directions and, at the same time, undergo a continuous isotropic-nematic (IN) transition. The process has been monitored by following the behavior of the adsorption isotherms for different values of lateral interaction energy/temperature. The numerical data were compared with mean-field analytical predictions and exact functions for noninteracting and 1D systems. The obtained results revealed the existence of three adsorption regimes in temperature. (1) At high temperatures, above the critical one characterizing the IN transition at full coverage Tc(\theta=1), the particles are distributed at random on the surface and the adlayer behaves as a noninteracting 2D system. (2) At very low temperatures, the asymmetric monomers adsorb forming chains over almost the entire range of coverage, and the adsorption process behaves as a 1D problem. (3) In the intermediate regime, the system exhibits a mixed regime and the filling of the lattice proceeds according to two different processes. In the first stage, the monomers adsorb isotropically on the lattice until the IN transition occurs in the system and, from this point, particles adsorb forming chains so that the adlayer behaves as a 1D fluid. The two adsorption processes are present in the adsorption isotherms, and a marked singularity can be observed that separates both regimes. Thus, the adsorption isotherms appear as sensitive quantities with respect to the IN phase transition, allowing us (i) to reproduce the phase diagram of the system for square lattices and (ii) to obtain an accurate determination of the phase diagram for triangular lattices.Comment: Langmuir, 201

    Zero-field magnetization reversal of two-body Stoner particles with dipolar interaction

    Get PDF
    Nanomagnetism has recently attracted explosive attention, in particular, because of the enormous potential applications in information industry, e.g. new harddisk technology, race-track memory[1], and logic devices[2]. Recent technological advances[3] allow for the fabrication of single-domain magnetic nanoparticles (Stoner particles), whose magnetization dynamics have been extensively studied, both experimentally and theoretically, involving magnetic fields[4-9] and/or by spin-polarized currents[10-20]. From an industrial point of view, important issues include lowering the critical switching field HcH_c, and achieving short reversal times. Here we predict a new technological perspective: HcH_c can be dramatically lowered (including Hc=0H_c=0) by appropriately engineering the dipole-dipole interaction (DDI) in a system of two synchronized Stoner particles. Here, in a modified Stoner-Wohlfarth (SW) limit, both of the above goals can be achieved. The experimental feasibility of realizing our proposal is illustrated on the example of cobalt nanoparticles.Comment: 5 pages, 4 figure

    One-Loop Electroweak Corrections to the Muon Anomalous Magnetic Moment Using the Pinch Technique

    Get PDF
    The definition of the physical properties of particles in perturbative gauge theories must satisfy gauge invariance as a requisite. The Pinch Technique provides a framework to define the electromagnetic form factors and the electromagnetic static properties of fundamental particles in a consistent and gauge-invariant form. We apply a simple prescription derived in this formalism to check the calculation of the gauge-invariant one-loop bosonic electroweak corrections to the muon anomalous magnetic moment.Comment: 6 pages and 1 eps figur

    A probabilistic model for crystal growth applied to protein deposition at the microscale

    Full text link
    A probabilistic discrete model for 2D protein crystal growth is presented. This model takes into account the available space and can describe growing processes of different nature due to the versatility of its parameters which gives the model great flexibility. The accuracy of the simulation is tested against a real protein (SbpA) crystallization experiment showing high agreement between the proposed model and the actual images of the nucleation process. Finally, it is also discussed how the regularity of the interface (i.e. the curve that separates the crystal from the substrate) affects to the evolution of the simulation.Comment: 13 pages, 12 figure
    corecore