2,190 research outputs found

    Scalar and vector meson exchange in V->P0P0gamma decays

    Full text link
    The scalar contributions to the radiative decays of light vector mesons into a pair of neutral pseudoscalars, VP0P0γV\to P^0P^0\gamma, are studied within the framework of the Linear Sigma Model. This model has the advantage of incorporating not only the scalar resonances in an explicit way but also the constraints required by chiral symmetry. The experimental data on ϕπ0π0γ\phi\to\pi^0\pi^0\gamma, ϕπ0ηγ\phi\to\pi^0\eta\gamma, ρπ0π0γ\rho\to\pi^0\pi^0\gamma and ωπ0π0γ\omega\to\pi^0\pi^0\gamma are satisfactorily accommodated in our framework. Theoretical predictions for ϕK0Kˉ0γ\phi\to K^0\bar K^0\gamma, ρπ0ηγ\rho\to\pi^0\eta\gamma, ωπ0ηγ\omega\to\pi^0\eta\gamma and the ratio ϕf0γ/a0γ\phi\to f_0\gamma/a_0\gamma are also given.Comment: 42 pages, 11 figures. A new paragraph explaining the seminal contribution of Ref. [19] is adde

    Measuring spectrum of spin wave using vortex dynamics

    Full text link
    We propose to measure the spectrum of magnetic excitation in magnetic materials using motion of vortex lattice driven by both ac and dc current in superconductors. When the motion of vortex lattice is resonant with oscillation of magnetic moments, the voltage decreases at a given current. From transport measurement, one can obtain frequency of the magnetic excitation with the wave number determined by vortex lattice constant. By changing the lattice constant through applied magnetic fields, one can obtains the spectrum of the magnetic excitation up to a wave vector of order 10 nm110\rm{\ nm^{-1}}.Comment: 4 pages, 2 figure

    Extremely Large and Anisotropic Upper Critical Field and the Ferromagnetic Instability in UCoGe

    Full text link
    Magnetoresistivity measurements with fine tuning of the field direction on high quality single crystals of the ferromagnetic superconductor UCoGe show anomalous anisotropy of the upper critical field H_c2. H_c2 for H // b-axis (H_c2^b) in the orthorhombic crystal structure is strongly enhanced with decreasing temperature with an S-shape and reaches nearly 20 T at 0 K. The temperature dependence of H_c2^a shows upward curvature with a low temperature value exceeding 30 T, while H_c2^c at 0 K is very small (~ 0.6 T). Contrary to conventional ferromagnets, the decrease of the Curie temperature with increasing field for H // b-axis marked by an enhancement of the effective mass of the conduction electrons appears to be the origin of the S-shaped H_c2^b curve. These results indicate that the field-induced ferromagnetic instability or magnetic quantum criticality reinforces superconductivity.Comment: 5 pages, 4 figures, accepted for publication in J. Phys. Soc. Jp

    Area Distribution of Elastic Brownian Motion

    Full text link
    We calculate the excursion and meander area distributions of the elastic Brownian motion by using the self adjoint extension of the Hamiltonian of the free quantum particle on the half line. We also give some comments on the area of the Brownian motion bridge on the real line with the origin removed. We will stress on the power of self adjoint extension to investigate different possible boundary conditions for the stochastic processes.Comment: 18 pages, published versio

    Quantum Free Yang-Mills on the Plane

    Full text link
    We construct a free-probability quantum Yang-Mills theory on the two dimensional plane, determine the Wilson loop expectation values, and show that this theory is the N=N=\infty limit of U(N) quantum Yang-Mills theory on the plane.Comment: 24 pages, tikz figure

    Influence of deposition parameters on mechanical properties of sputter-deposited Cr2O3 thin films

    Get PDF
    Among the oxides, Cr2O3 exhibits the highest hardness value and a low coefficient of friction. These properties make chromium oxide an excellent coating material for tribological applications. Cr2O3 thin films were deposited by radio-frequency reactive magnetron sputtering at substrate temperature in the range 363-593 K. The hardness and elastic modulus of the films were measured by two complementary nanoindentation techniques to investigate the influences of the substrate temperature and the oxygen content in the sputtering gas. While the continuous stiffness data method provides information throughout the whole film thickness, nanoindentation combined with scanning force microscopy of the residual imprints allows visualization of pileup, cracking, and delamination from the substrate. Hardness values up to 32 GPa were obtained for substrate temperatures exceeding 500 K and oxygen contents between 15% and 25% of the total gas pressure. The films, obtained with these deposition conditions, showed good adhesion to silicon substrate

    Pressure Evolution of the Ferromagnetic and Field Re-entrant Superconductivity in URhGe

    Full text link
    Fine pressure (PP) and magnetic field (HH) tuning on the ferromagnetic superconductor URhGe are reported in order to clarify the interplay between the mass enhancement, low field superconductivity (SC) and field reentrant superconductivity (RSC) by electrical resistivity measurements. With increasing PP, the transition temperature and the upper critical field of the low field SC decrease slightly, while the RSC dome drastically shifts to higher fields and shrinks. The spin reorientation field HRH_{\rm R} also increases. At a pressure P1.8P\sim 1.8 GPa, the RSC has collapsed while the low field SC persists and may disappear only above 4 GPa. Via careful (P,H)(P, H) studies of the inelastic T2T^2 resistivity term, it is demonstrated that this drastic change is directly related with the PP dependence of the effective mass which determines the critical field of the low field SC and RSC on the basis of triplet SC without Pauli limiting field.Comment: 5 pages, 6 figures, to appear in Journal of the Physical Society of Japa

    Fostering collective intelligence education

    Get PDF
    New educational models are necessary to update learning environments to the digitally shared communication and information. Collective intelligence is an emerging field that already has a significant impact in many areas and will have great implications in education, not only from the side of new methodologies but also as a challenge for education. This paper proposes an approach to a collective intelligence model of teaching using Internet to combine two strategies: idea management and real time assessment in the class. A digital tool named Fabricius has been created supporting these two elements to foster the collaboration and engagement of students in the learning process. As a result of the research we propose a list of KPI trying to measure individual and collective performance. We are conscious that this is just a first approach to define which aspects of a class following a course can be qualified and quantified.Postprint (published version

    Spectral statistics of disordered metals in the presence of several Aharonov-Bohm fluxes

    Full text link
    The form factor for spectral correlations in a diffusive metal is calculated in the presence of several Aharonov-Bohm fluxes. When the fluxes ϕ\phi are equal, the correlations are universal functions of ng2ϕn g^2 \phi where gg is the dimensionless conductance and nn is the number of applied fluxes. This explains recent flux dependence of the correlations found numerically at the metal-insulator transition.Comment: 3 pages, Latex, 1 figure, to appear in Phys. Rev. B Rapid Com
    corecore