6 research outputs found

    Insulin-like growth factor I and its binding protein-3 are regulators of lactation and maternal responsiveness

    Get PDF
    Adaptation to motherhood includes maternal behaviour and lactation during the postpartum period. The major organizing centres of maternal behaviour and lactation are located in the hypothalamic medial preoptic area (MPOA) and the arcuate nucleus, respectively. Insulin-like growth factor I (IGF-I) is an effector of the growth hormone axis; however, its function in the brain is largely unexplored. We identified increased maternal IGF binding protein-3 (IGFBP-3) expression in preoptic rat microarray data and confirmed it by RT-PCR. In situ hybridization histochemistry showed markedly elevated IGFBP-3 expression in the MPOA and the arcuate nucleus in rat dams. Prolonged intracerebroventricular injection of IGF-I or antagonism of brain IGFBP-3 with an inhibitor (NBI-31772) using osmotic minipumps increased pup retrieval time, suggesting reduced maternal motivation. Suckling-induced prolactin release and pup weight gain were also suppressed by IGF-I, suggesting reduced lactation. In addition, IGF-I-induced tyrosine hydroxylase expression and its specific phosphorylation in tuberoinfundibular dopaminergic neurons suppress prolactin secretion. Thus, IGF-I may inhibit both behavioural and lactational alterations in mothers. Neurons in the MPOA and arcuate nuclei express IGFBP-3 during the postpartum period to neutralize IGF-I effects. IGFBP-3 can prevent the blockade of maternal behaviour and lactation exerted by IGF-I, suggesting a novel modulatory mechanism underlying the behavioural and hormonal effects during central maternal adaptations

    Transcriptome Sequencing in the Preoptic Region of Rat Dams Reveals a Role of Androgen Receptor in the Control of Maternal Behavior

    Get PDF
    (1) Background: Preoptic region of hypothalamus is responsible to control maternal behavior, which was hypothesized to be associated with gene expressional changes. (2) Methods: Transcriptome sequencing was first applied in the preoptic region of rat dams in comparison to a control group of mothers whose pups were taken away immediately after parturition and did not exhibit caring behavior 10 days later. (3) Results: Differentially expressed genes were found and validated by quantitative RT-PCR, among them NACHT and WD repeat domain containing 1 (Nwd1) is known to control androgen receptor (AR) protein levels. The distribution of Nwd1 mRNA and AR was similar in the preoptic area. Therefore, we focused on this steroid hormone receptor and found its reduced protein level in rat dams. To establish the function of AR in maternal behavior, its antagonist was administered intracerebroventricularly into mother rats and increased pup-directed behavior of the animals. (4) Conclusions: AR levels are suppressed in the preoptic area of mothers possibly mediated by altered Nwd1 expression in order to allow sustained high-level care for the pups. Thus, our study first implicated the AR in the control of maternal behaviors

    Thalamic neuropeptide mediating the effects of nursing on lactation and maternal motivation

    Get PDF
    Nursing has important physiological and psychological consequences on mothers during the postpartum period. Tuberoinfundibular peptide of 39 residues (TIP39) may contribute to its effects on prolactin release and maternal motivation. Since TIP39-containing fibers and the receptor for TIP39, the parathyroid hormone 2 receptor (PTH2 receptor) are abundant in the arcuate nucleus and the medial preoptic area, we antagonized TIP39 action locally to reveal its actions. Mediobasal hypothalamic injection of a virus encoding an antagonist of the PTH2 receptor markedly decreased basal serum prolactin levels and the suckling-induced prolactin release. In contrast, injecting this virus into the preoptic area had no effect on prolactin levels, but did dampen maternal motivation, judged by reduced time in a pup-associated cage during a place preference test. In support of an effect of TIP39 on maternal motivation, we observed that TIP39 containing fibers and terminals had the same distribution within the preoptic area as neurons expressing Fos in response to suckling. Furthermore, TIP39 terminals closely apposed the plasma membrane of 82% of Fos-ir neurons. Retrograde tracer injected into the arcuate nucleus and the medial preoptic area labeled TIP39 neurons in the posterior intralaminar complex of the thalamus (PIL), indicating that these cells but not other groups of TIP39 neurons project to these hypothalamic regions. We also found that TIP39 mRNA levels in the PIL markedly increased around parturition and remained elevated throughout the lactation period, demonstrating the availability of the peptide in postpartum mothers. Furthermore, suckling, but not pup exposure without physical contact, increased Fos expression by PIL TIP39 neurons. These results indicate that suckling activates TIP39 neurons in the PIL that affect prolactin release and maternal motivation via projections to the arcuate nucleus and the preoptic area, respectively

    Suckling induced insulin-like growth factor-1 (IGF-1) release in mother rats

    Get PDF
    Objective: Lactation involves significant neuroendocrine changes. The elevated prolactin (PRL) release from the pituitary, induced markedly by suckling, is the most relevant example. Suckling also causes a significant and rapid elevation in growth hormone (GH) levels. GH is necessary for milk synthesis as milk yield is stopped completely in the absence of PRL and GH, while the absence of PRL alone causes only a 50% reduction. Insulin-like growth factor-1 (IGF-1) plays an important role in the GH axis. GH exerts its effects through IGF-1 in the periphery, for example in the mammary gland. In addition, IGF-1 is responsible for the long-loop feedback control of GH secretion. Design: IGF-1 secretion has not been established yet in mothers. Therefore, in the present study, we investigated the effect of suckling on serum IGF-1 level in rat mothers and correlated it with serum PRL levels. We examined a potential mechanism of the regulation of IGF-1 level during suckling by administering IGF-1 into the lateral ventricle of rat mothers continuously for 12 days, or acutely, right before the start of suckling. Results: We described that suckling affected IGF-1 release based on one-way repeated measures ANOVA (F =10.8 and p < 0.001) and caused a marked increase of IGF-1 level 30 min after the start of suckling (p < 0.001). We demonstrated a significant (p < 0.05; the correlation coefficient was 0.29) correlation to PRL level during suckling which supports that PRL could induce IGF-1 release. The prolonged central IGF-1 administration diminished the suckling-induced IGF-1 surge (F= 9.19 and p < 0.001) while the acute treatment did not have any effect compared to artificial cerebrospinal fluid injection, analysed with two-way repeated measures ANOVA. Conclusions: In conclusion, suckling induces IGF-1 release either by elevating PRL or GH. Long-loop feedback via IGF-1 in the GH axis can diminish this action
    corecore