26 research outputs found

    The role of integrins and cytoskeletal forces in interstitial leukocyte migration

    Get PDF

    Differential trafficking of ligands trogocytosed via CD28 versus CTLA4 promotes collective cellular control of co-stimulation

    Get PDF
    Intercellular communication is crucial for collective regulation of cellular behaviors. While clustering T cells have been shown to mutually control the production of key communication signals, it is unclear whether they also jointly regulate their availability and degradation. Here we use newly developed reporter systems, bioinformatic analyses, protein structure modeling and genetic perturbations to assess this. We find that T cells utilize trogocytosis by competing antagonistic receptors to differentially control the abundance of immunoregulatory ligands. Specifically, ligands trogocytosed via CD28 are shuttled to the T cell surface, enabling them to co-stimulate neighboring T cells. In contrast, CTLA4-mediated trogocytosis targets ligands for degradation. Mechanistically, this fate separation is controlled by different acid-sensitivities of receptor-ligand interactions and by the receptor intracellular domains. The ability of CD28 and CTLA4 to confer different fates to trogocytosed ligands reveals an additional layer of collective regulation of cellular behaviors and promotes the robustness of population dynamics.Fil: Zenke, Simon. Albert Ludwigs University of Freiburg; AlemaniaFil: Sica, Mauricio Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Steinberg, Florian. Albert Ludwigs University of Freiburg; AlemaniaFil: Braun, Julia. Albert Ludwigs University of Freiburg; AlemaniaFil: Zink, Alicia. Albert Ludwigs University of Freiburg; AlemaniaFil: Gavrilov, Alina. Max Planck Institute of Immunobiology and Epigenetics; AlemaniaFil: Hilger, Alexander. Albert Ludwigs University of Freiburg; AlemaniaFil: Arra, Aditya. Otto-von-Guericke-Universität Magdeburg; AlemaniaFil: Brunner Weinzierl, Monika. Otto-von-Guericke-Universität Magdeburg; AlemaniaFil: Elling, Roland. Albert Ludwigs University of Freiburg; AlemaniaFil: Beyersdorf, Niklas. Universität Würzburg; AlemaniaFil: Lämmermann, Tim. Albert Ludwigs University of Freiburg; AlemaniaFil: Smulski, Cristian Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rohr, Jan C.. Albert Ludwigs University of Freiburg; Alemani

    Platelet Serotonin Aggravates Myocardial Ischemia/Reperfusion Injury via Neutrophil Degranulation

    Get PDF
    Background: Platelets store large amounts of serotonin that they release during thrombus formation or acute inflammation. This facilitates hemostasis and modulates the inflammatory response. Methods: Infarct size, heart function, and inflammatory cell composition were analyzed in mouse models of myocardial reperfusion injury with genetic and pharmacological depletion of platelet serotonin. These studies were complemented by in vitro serotonin stimulation assays of platelets and leukocytes in mice and men, and by measuring plasma serotonin levels and leukocyte activation in patients with acute coronary syndrome. Results: Platelet-derived serotonin induced neutrophil degranulation with release of myeloperoxidase and hydrogen peroxide (H2O2) and increased expression of membrane-bound leukocyte adhesion molecule CD11b, leading to enhanced inflammation in the infarct area and reduced myocardial salvage. In patients hospitalized with acute coronary syndrome, plasmatic serotonin levels correlated with CD11b expression on neutrophils and myeloperoxidase plasma levels. Long-term serotonin reuptake inhibition - reported to protect patients with depression from cardiovascular events - resulted in the depletion of platelet serotonin stores in mice. These mice displayed a reduction in neutrophil degranulation and preserved cardiac function. In line, patients with depression using serotonin reuptake inhibition, presented with suppressed levels of CD11b surface expression on neutrophils and lower myeloperoxidase levels in blood. Conclusions: Taken together, we identify serotonin as a potent therapeutic target in neutrophil-dependent thromboinflammation during myocardial reperfusion injury.Fil: Mauler, Maximilian. No especifíca;Fil: Herr, Nadine. No especifíca;Fil: Schoenichen, Claudia. No especifíca;Fil: Witsch, Thilo. No especifíca;Fil: Marchini, Timoteo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular; ArgentinaFil: Härdtner, Carmen. No especifíca;Fil: Koentges, Christoph. No especifíca;Fil: Kienle, Korbinian. Max Planck Institute Of Immunobiology And Epigenetics; AlemaniaFil: Ollivier, Véronique. Inserm; FranciaFil: Schell, Maximilian. No especifíca;Fil: Dorner, Ludwig. No especifíca;Fil: Wippel, Christopher. No especifíca;Fil: Stallmann, Daniela. No especifíca;Fil: Normann, Claus. No especifíca;Fil: Bugger, Heiko. No especifíca;Fil: Walther, Paul. Universitat Ulm; AlemaniaFil: Wolf, Dennis. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Ahrens, Ingo. No especifíca;Fil: Lämmermann, Tim. Max Planck Institute Of Immunobiology And Epigenetics; AlemaniaFil: Ho-Tin-Noé, Benoît. Inserm; FranciaFil: Ley, Klaus. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Bode, Christoph. No especifíca;Fil: Hilgendorf, Ingo. No especifíca;Fil: Duerschmied, Daniel. No especifíca

    T cells: Bridge-and-channel commute to the white pulp

    Get PDF
    In contrast to lymph nodes, the lymphoid regions of the spleen—the white pulp—are located deep within the organ, yielding the trafficking paths of T cells in the white pulp largely invisible. In an intravital microscopy tour de force reported in this issue of Immunity, Chauveau et al. show that T cells perform unidirectional, perivascular migration through the enigmatic marginal zone bridging channels

    A two-step search and run response to gradients shapes leukocyte navigation in vivo.

    No full text
    Migrating cells must interpret chemical gradients to guide themselves within tissues. A long-held principle is that gradients guide cells via reorientation of leading-edge protrusions. However, recent evidence indicates that protrusions can be dispensable for locomotion in some contexts, raising questions about how cells interpret endogenous gradients in vivo and whether other mechanisms are involved. Using laser wound assays in zebrafish to elicit acute endogenous gradients and quantitative analyses, we demonstrate a two-stage process for leukocyte chemotaxis in vivo: first a "search" phase, with stimulation of actin networks at the leading edge, cell deceleration, and turning. This is followed by a "run" phase, with fast actin flows, cell acceleration, and persistence. When actin dynamics are perturbed, cells fail to resolve the gradient, suggesting that pure spatial sensing of the gradient is insufficient for navigation. Our data suggest that cell contractility and actin flows provide memory for temporal sensing, while expansion of the leading edge serves to enhance gradient sampling

    Îł-Parvin Is Dispensable for Hematopoiesis, Leukocyte Trafficking, and T-Cell-Dependent Antibody Response

    Get PDF
    Integrins regulate cell behavior through the assembly of multiprotein complexes at the site of cell adhesion. Parvins are components of such a multiprotein complex. They consist of three members (α-, β-, and γ-parvin), form a functional complex with integrin-linked kinase (ILK) and PINCH, and link integrins to the actin cytoskeleton. Whereas α- and β-parvins are widely expressed, γ-parvin has been reported to be expressed in hematopoietic organs. In the present study, we report the expression pattern of the parvins in hematopoietic cells and the phenotypic analysis of γ-parvin-deficient mice. Whereas α-parvin is not expressed in hematopoietic cells, β-parvin is only found in myeloid cells and γ-parvin is present in both cells of the myeloid and lymphoid lineages, where it binds ILK. Surprisingly, loss of γ-parvin expression had no effect on blood cell differentiation, proliferation, and survival and no consequence for the T-cell-dependent antibody response and lymphocyte and dendritic cell migration. These data indicate that despite the high expression of γ-parvin in hematopoietic cells it must play a more subtle role for blood cell homeostasis

    Cytohesin-1 controls the activation of RhoA and modulates integrin-dependent adhesion and migration of dendritic cells

    Get PDF
    Adhesion and motility of mammalian leukocytes are essential requirements for innate and adaptive immune defense mechanisms. We show here that the guanine nucleotide exchange factor cytohesin-1, which had previously been demonstrated to be an important component of beta-2 integrin activation in lymphocytes, regulates the activation of the small GTPase RhoA in primary dendritic cells (DCs). Cytohesin-1 and RhoA are both required for the induction of chemokine-dependent conformational changes of the integrin beta-2 subunit of DCs during adhesion under physiological flow conditions. Furthermore, use of RNAi in murine bone marrow DCs (BM-DCs) revealed that interference with cytohesin-1 signaling impairs migration of wild-type dendritic cells in complex 3D environments and in vivo. This phenotype was not observed in the complete absence of integrins. We thus demonstrate an essential role of cytohesin-1/RhoA during ameboid migration in the presence of integrins and further suggest that DCs without integrins switch to a different migration mode
    corecore