469 research outputs found

    Neuropathology and Inflammatory Cell Characterization in 10 Autoptic COVID-19 Brains

    Get PDF
    COVID-19 presents with a wide range of clinical neurological manifestations. It has been recognized that SARS-CoV-2 infection affects both the central and peripheral nervous system, leading to smell and taste disturbances; acute ischemic and hemorrhagic cerebrovascular disease; encephalopathies and seizures; and causes most surviving patients to have long lasting neurological symptoms. Despite this, typical neuropathological features associated with the infection have still not been identified. Studies of post-mortem examinations of the cerebral cortex are obtained with difficulty due to laboratory safety concerns. In addition, they represent cases with different neurological symptoms, age or comorbidities, thus a larger number of brain autoptic data from multiple institutions would be crucial. Histopathological findings described here are aimed to increase the current knowledge on neuropathology of COVID-19 patients. We report post-mortem neuropathological findings of ten COVID-19 patients. A wide range of neuropathological lesions were seen. The cerebral cortex of all patients showed vascular changes, hyperemia of the meninges and perivascular inflammation in the cerebral parenchyma with hypoxic neuronal injury. Perivascular lymphocytic inflammation of predominantly CD8-positive T cells mixed with CD68-positive macrophages, targeting the disrupted vascular wall in the cerebral cortex, cerebellum and pons were seen. Our findings support recent reports highlighting a role of microvascular injury in COVID-19 neurological manifestations

    Feasibility of a cognitive behavioural group intervention to reduce fear of falling and associated avoidance of activity in community-living older people: a process evaluation

    Get PDF
    BACKGROUND: Fear of falling and associated avoidance of activity are common among older people and may have negative consequences in terms of functional decline, quality of life and institutionalisation. We evaluated the effects of a cognitive behavioural group intervention to reduce fear of falling and associated avoidance of activity among older persons. This intervention showed favourable effects on fear of falling, avoidance of activity, daily activity, and several secondary outcomes. The aim of the present study is to assess the feasibility of this cognitive behavioural group intervention for participants and facilitators. METHODS: The intervention consisted of eight weekly group sessions lasting two hours each and a booster session after six months. Self-administered questionnaires, registration forms and interviews were used to collect data from participants (n = 168) and facilitators (n = 6) on the extent to which the intervention was performed according to protocol, participant attendance, participant adherence, and participants' and facilitators' opinion of the intervention. Quantitative data from the questionnaires and registration forms were analysed by means of descriptive statistics. Qualitative data were categorised based on matching contents of the answers. RESULTS: Facilitators reported no major protocol deviations. Twenty-six percent of the participants withdrew before the start of the programme. Of the persons who started the programme, 84% actually completed it. The participants reported their adherence as good, but facilitators had a less favourable opinion of this. The majority of participants still reported substantial benefits from the programme after six and twelve months of follow-up (71% and 61% respectively). Both participants and facilitators provided suggestions for improvement of the intervention. CONCLUSION: Results of this study show that the current cognitive behavioural group intervention is feasible for both participants and facilitators and fits in well with regular care. Minor refinement of the intervention, however, is warranted to further improve intervention effectiveness and efficiency. Based on these positive findings, we recommend implementing a refined version of this effective and feasible intervention in regular care. TRIAL REGISTRATION: ISRCTN43792817

    Overweight/obesity as the potentially most important lifestyle factor associated with signs of pneumonia in COVID-19

    Get PDF
    Objective: The occurrence of pneumonia separates severe cases of COVID-19 from the majority of cases with mild disease. However, the factors determining whether or not pneumonia develops remain to be fully uncovered. We therefore explored the associations of several lifestyle factors with signs of pneumonia in COVID-19. Methods Between May and July 2020, we conducted an online survey of 201 adults in Germany who had recently gone through COVID-19, predominantly as outpatients. Of these, 165 had a PCR-based diagnosis and 36 had a retrospective diagnosis by antibody testing. The survey covered demographic information, eight lifestyle factors, comorbidities and medication use. We defined the main outcome as the presence vs. the absence of signs of pneumonia, represented by dyspnea, the requirement for oxygen therapy or intubation. Results: Signs of pneumonia occurred in 39 of the 165 individuals with a PCR-based diagnosis of COVID-19 (23.6%). Among the lifestyle factors examined, only overweight/obesity was associated with signs of pneumonia (odds ratio 2.68 (1.29-5.59) p = 0.008). The observed association remained significant after multivariate adjustment, with BMI as a metric variable, and also after including the antibody-positive individuals into the analysis. Conclusions: This exploratory study finds an association of overweight/obesity with signs of pneumonia in COVID-19. This finding suggests that a signal proportional to body fat mass, such as the hormone leptin, impairs the body's ability to clear SARS-CoV-2 before pneumonia develops. This hypothesis concurs with previous work and should be investigated further to possibly reduce the proportion of severe cases of COVID-19

    Timescales of Quartz Crystallization and the Longevity of the Bishop Giant Magma Body

    Get PDF
    Supereruptions violently transfer huge amounts (100 s–1000 s km3) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted ∼760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of <10,000 years, more typically within 500–3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies

    A Very Young Radio-loud Magnetar

    Get PDF
    The magnetar Swift J1818.0–1607 was discovered in 2020 March when Swift detected a 9 ms hard X-ray burst and a long-lived outburst. Prompt X-ray observations revealed a spin period of 1.36 s, soon confirmed by the discovery of radio pulsations. We report here on the analysis of the Swift burst and follow-up X-ray and radio observations. The burst average luminosity was L burst ~ 2 × 1039 erg s−1 (at 4.8 kpc). Simultaneous observations with XMM-Newton and NuSTAR three days after the burst provided a source spectrum well fit by an absorbed blackbody (NH{N}_{{\rm{H}}} = (1.13 ± 0.03) × 1023 cm−2 and kT = 1.16 ± 0.03 keV) plus a power law (Γ = 0.0 ± 1.3) in the 1–20 keV band, with a luminosity of ~8 × 1034 erg s−1, dominated by the blackbody emission. From our timing analysis, we derive a dipolar magnetic field B ~ 7 × 1014 G, spin-down luminosity E˙rot∼1.4×1036{\dot{E}}_{\mathrm{rot}}\sim 1.4\times {10}^{36} erg s−1, and characteristic age of 240 yr, the shortest currently known. Archival observations led to an upper limit on the quiescent luminosity <5.5 × 1033 erg s−1, lower than the value expected from magnetar cooling models at the source characteristic age. A 1 hr radio observation with the Sardinia Radio Telescope taken about 1 week after the X-ray burst detected a number of strong and short radio pulses at 1.5 GHz, in addition to regular pulsed emission; they were emitted at an average rate 0.9 min−1 and accounted for ~50% of the total pulsed radio fluence. We conclude that Swift J1818.0–1607 is a peculiar magnetar belonging to the small, diverse group of young neutron stars with properties straddling those of rotationally and magnetically powered pulsars. Future observations will make a better estimation of the age possible by measuring the spin-down rate in quiescence

    Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics

    Get PDF
    Open Source PaperThis work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The attached file is the published version of the article
    • …
    corecore