24 research outputs found

    Erk5 controls Slug expression and keratinocyte activation during wound healing.

    No full text
    International audienceReepithelialization during cutaneous wound healing involves numerous signals that result in basal keratinocyte activation, spreading, and migration, all linked to a loosening of cell-cell adhesion structures. The transcription factor Slug is required for this process, and EGF treatment of human keratinocytes induced activating phosphorylation of Erk5 that coincides with slug transcription. Accordingly, ectopic activation of Erk5 led to increased Slug mRNA levels and faster wound healing, whereas keratinocyte migration was totally blocked by Erk5 pathway inhibition. Expression of a shRNA specific for Erk5 strongly diminished Erk5 levels in keratinocytes and significantly decreased their motility response to EGF, along with induction of Slug expression. These Erk5-deprived keratinocytes showed an altered, more compact morphology, along with disruption of desmosome organization. Accordingly, they displayed an altered ability to form cell aggregates. These results implicate a novel EGFR/Erk5/Slug pathway in the control of cytoskeleton organization and cell motility in keratinocytes treated with EGF

    CX3CL1/fractalkine shedding by human hepatic stellate cells: contribution to chronic inflammation in the liver.

    No full text
    International audienceChemokines are the inflammatory mediators that modulate liver fibrosis, a common feature of chronic inflammatory liver diseases. CX3CL1/fractalkine is a membrane-associated chemokine that requires step processing for chemotactic activity and has been recently implicated in liver disease. Here, we investigated the potential shedding activities involved in the release of the soluble chemotactic peptides from CX3CL1 in the injured liver. We showed an increased expression of the sheddases ADAM10 and ADAM17 in patients with chronic liver diseases that was associated with the severity of liver fibrosis. We demonstrated that hepatic stellate cells (HSC) were an important source of ADAM10 and ADAM17 and that treatment with the inflammatory cytokine inter-feron-gamma induced the expression of CX3CL1 and release of soluble peptides. This release was inhibited by the metalloproteinase inhibitor batimastat; however, ADAM10/ADAM17 inhibitor GW280264X only partially affected shedding activity. By using selective tissue metalloprotease inhibitors and overexpression analyses, we showed that CX3CL1 was mainly processed by matrix metalloproteinase (MMP)-2, a metalloprotease highly expressed by HSC. We further demonstrated that the CX3CL1 soluble peptides released from stimulated HSC induced the activation of the CX3CR1-dependent signalling pathway and promoted chemoattraction of monocytes in vitro. We conclude that ADAM10, ADAM17 and MMP-2 synthesized by activated HSC mediate CX3CL1 shedding and release of chemotactic peptides, thereby facilitating recruitment of inflammatory cells and paracrine stimulation of HSC in chronic liver diseases

    Infection with influenza virus induces IL-33 in murine lungs.

    No full text
    International audienceIL-33, a novel IL-1 family member, is crucially expressed and involved in pulmonary diseases, but its regulation in viral diseases such as influenza A virus (IAV) remains unclear. This study aimed to characterize the expression and release of IL-33 in lungs of IAV-infected mice in vivo and in murine respiratory epithelial cells (MLE-15) in vitro. Our results provide evidence of up-regulation of IL-33 mRNA in IAV-infected murine lungs, compared with noninfected control mice. The overexpression of IL-33 was positively correlated with a significant increase in mRNA encoding the proinflammatory cytokines TNF-α, IFN-γ, IL-1β, and IL-6, and was also associated with an increase in IFN-β mRNA. A profound overexpression of IL-33 protein was evident in IAV-infected murine lungs and bronchoalveolar lavages of influenza-infected mice, compared with low concentrations in naive lungs in vivo. Immunolocalization highlighted the cellular expression of IL-33 in alveolar epithelial and endothelial cells, along with increased infiltrate cells in virus-infected lungs. Further in vitro experiments showed an induction of IL-33 transcript-in MLE-15 cells and human epithelial cells (A549) infected with different strains of IAV in comparison with noninfected cells. In conclusion, our findings evidenced a profound expression of IL-33 in lungs during both in vivo and in vitro IAV infections, suggesting a role for IL-33 in virus-induced lung infections
    corecore