127 research outputs found

    Remote sensing of tropical tropopause layer radiation balance using A-train measurements

    Get PDF
    Determining the level of zero net radiative heating (LZH) is critical to understanding parcel trajectory in the Tropical Tropopause Layer (TTL) and associated stratospheric hydration processes. Previous studies of the TTL radiative balance have focused on using radiosonde data, but remote sensing measurements from polar-orbiting satellites may provide the relevant horizontal and vertical information for assessing TTL solar heating and infrared cooling rates, especially across the Pacific Ocean. CloudSat provides a considerable amount of vertical information about the distribution of cloud properties relevant to heating rate analysis. The ability of CloudSat measurements and ancillary information to constrain LZH is explored. We employ formal error propagation analysis for derived heating rate uncertainty given the CloudSat cloud property retrieval algorithms. Estimation of the LZH to within approximately 0.5 to 1 km is achievable with CloudSat, but it has a low-altitude bias because the radar is unable to detect thin cirrus. This can be remedied with the proper utilization of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar backscatter information. By utilizing an orbital simulation with the GISS data set, we explore the representativeness of non-cross-track scanning active sounders in terms of describing the LZH distribution. In order to supplement CloudSat, we explore the ability of Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Scanning Radiometer-EOS (AMSR-E) to constrain LZH and find that these passive sounders are useful where the cloud top height does not exceed 7 km. The spatiotemporal distributions of LZH derived from CloudSat and CALIPSO measurements are presented which suggest that thin cirrus have a limited effect on LZH mean values but affect LZH variability

    Applying dissipative dynamical systems to pseudorandom number generation: Equidistribution property and statistical independence of bits at distances up to logarithm of mesh size

    Full text link
    The behavior of a family of dissipative dynamical systems representing transformations of two-dimensional torus is studied on a discrete lattice and compared with that of conservative hyperbolic automorphisms of the torus. Applying dissipative dynamical systems to generation of pseudorandom numbers is shown to be advantageous and equidistribution of probabilities for the sequences of bits can be achieved. A new algorithm for generating uniform pseudorandom numbers is proposed. The theory of the generator, which includes proofs of periodic properties and of statistical independence of bits at distances up to logarithm of mesh size, is presented. Extensive statistical testing using available test packages demonstrates excellent results, while the speed of the generator is comparable to other modern generators.Comment: 6 pages, 3 figures, 3 table

    Physical tests for Random Numbers in Simulations

    Full text link
    We propose three physical tests to measure correlations in random numbers used in Monte Carlo simulations. The first test uses autocorrelation times of certain physical quantities when the Ising model is simulated with the Wolff algorithm. The second test is based on random walks, and the third on blocks of n successive numbers. We apply the tests to show that recent errors in high precision simulations using generalized feedback shift register algorithms are due to short range correlations in random number sequences. We also determine the length of these correlations.Comment: 16 pages, Post Script file, HU-TFT-94-

    Aerosol-Radiation-Cloud Interactions in the South-East Atlantic: Future Suborbital Activities to Address Knowledge Gaps in Satellite and Model Assessments

    Get PDF
    Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles. Particles lofted into the mid-troposphere are transported westward over the South-East (SE) Atlantic, home to one of the three permanent subtropical stratocumulus (Sc) cloud decks in the world. The SE Atlantic stratocumulus deck interacts with the dense layers of BB aerosols that initially overlay the cloud deck, but later subside and may mix into the clouds. These interactions include adjustments to aerosol-induced solar heating and microphysical effects, and their global representation in climate models remains one of the largest uncertainties in estimates of future climate. Hence, new observations over the SE Atlantic have significant implications for global climate change scenarios. Our understanding of aerosol-cloud interactions in the SE Atlantic is hindered both by the lack of knowledge on aerosol and cloud properties, as well as the lack of knowledge about detailed physical processes involved. Most notably, we are missing knowledge on the absorptive and cloud nucleating properties of aerosols, including their vertical distribution relative to clouds, on the locations and degree of aerosol mixing into clouds, on the processes that govern cloud property adjustments, and on the importance of aerosol effects on clouds relative to co-varying synoptic scale meteorology. We discuss the current knowledge of aerosol and cloud property distributions based on satellite observations and sparse suborbital sampling. Recent efforts to make full use of A-Train aerosol sensor synergies will be highlighted. We describe planned field campaigns in the region to address the existing knowledge gaps. Specifically, we describe the scientific objectives and implementation of the five synergistic, international research activities aimed at providing some of the key aerosol and cloud properties and a process-level understanding of aerosol-cloud interactions over the SE Atlantic: NASA's ORACLES, the UK Met Office's CLARIFY-2016, the DoE's LASIC, NSF's ONFIRE, and CNRS' AEROCLO-SA

    An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin

    Get PDF
    This is the final version. Available on open access from the European Geosciences Union via the DOI in this recordData availability: All ORACLES data are accessible via the digital object identifiers (DOIs) provided under ORACLES Science Team (2020a–d) references: https://doi.org/10.5067/Suborbital/ORACLES/P3/2018_V2 (ORACLES Science Team, 2020a), https://doi.org/10.5067/Suborbital/ORACLES/P3/2017_V2 (ORACLES Science Team, 2020b), https://doi.org/10.5067/Suborbital/ORACLES/P3/2016_V2 (ORACLES Science Team, 2020c), and https://doi.org/10.5067/Suborbital/ORACLES/ER2/2016_V2 (ORACLES Science Team, 2020d). The only exceptions are noted as footnotes to Table B2.Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles, yet the fate of these particles and their influence on regional and global climate is poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA EVS-2 (Earth Venture Suborbital-2) investigation with three intensive observation periods designed to study key atmospheric processes that determine the climate impacts of these aerosols. During the Southern Hemisphere winter and spring (June–October), aerosol particles reaching 3–5 km in altitude are transported westward over the southeast Atlantic, where they interact with one of the largest subtropical stratocumulus (Sc) cloud decks in the world. The representation of these interactions in climate models remains highly uncertain in part due to a scarcity of observational constraints on aerosol and cloud properties, as well as due to the parameterized treatment of physical processes. Three ORACLES deployments by the NASA P-3 aircraft in September 2016, August 2017, and October 2018 (totaling ∼350 science flight hours), augmented by the deployment of the NASA ER-2 aircraft for remote sensing in September 2016 (totaling ∼100 science flight hours), were intended to help fill this observational gap. ORACLES focuses on three fundamental science themes centered on the climate effects of African BB aerosols: (a) direct aerosol radiative effects, (b) effects of aerosol absorption on atmospheric circulation and clouds, and (c) aerosol–cloud microphysical interactions. This paper summarizes the ORACLES science objectives, describes the project implementation, provides an overview of the flights and measurements in each deployment, and highlights the integrative modeling efforts from cloud to global scales to address science objectives. Significant new findings on the vertical structure of BB aerosol physical and chemical properties, chemical aging, cloud condensation nuclei, rain and precipitation statistics, and aerosol indirect effects are emphasized, but their detailed descriptions are the subject of separate publications. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project and the dataset it produced.NAS

    Staffing multi-skill call centers via search methods and a performance approximation

    No full text
    A multi-skill staffing problem in a call center where the agent skill sets are exogenous and the call routing policy has well-specified features of overflow between different agent types is addressed. Constraints are imposed on the service level for each call class, defined here as the steady-state fraction of calls served within a given time threshold, excluded. An approximation of these service levels is developed that allows an arbitrary overflow mechanism and customer abandonment. A two-stage heuristic that finds good solutions to mathematical programs with such constraints is developed. The first stage uses search methods supported by the approximation. Because service level approximation errors may be substantial, the solution is adjusted in a second stage in which performance is estimated by simulation. Realistic problems of varying size and routing policy are solved. The proposed approach is shown to be competitive with (and often better than) previously available methods
    • …
    corecore