35 research outputs found

    SexTant: Visualizing Time-Evolving Linked Geospatial Data

    Get PDF
    We present SexTant, a Web-based system for the visualization and exploration of time-evolving linked geospatial data and the creation, sharing, and collaborative editing of "temporally-enriched" thematic maps which are produced by combining dierent sources of such data

    GeoTriples: a Tool for Publishing Geospatial Data as RDF Graphs Using R2RML Mappings

    Get PDF
    In this paper we present the tool GeoTriples that allows the transformation of Earth Observation data and geospatial data into RDF graphs, by using and extending the R2RML mapping language to be able to deal with the specificities of geospatial data. GeoTriples is a semi-automated tool that transforms geospatial information into RDF following the state of the art vocabularies like GeoSPARQL and stSPARQL, but at the same time it is not tightly coupled to a specific vocabulary

    GeoTriples: Transforming geospatial data into RDF graphs using R2RML and RML mappings

    Get PDF
    A lot of geospatial data has become available at no charge in many countries recently. Geospatial data that is currently made available by government agencies usually do not follow the linked data paradigm. In the few cases where government agencies do follow the linked data paradigm (e.g., Ordnance Survey in the United Kingdom), specialized scripts have been used for transforming geospatial data into RDF. In this paper we present the open source tool GeoTriples which generates and processes extended R2RML and RML mappings that transform geospatial data from many input formats into RDF. GeoTriples allows the transformation of geospatial data stored in raw files (shapefiles, CSV, KML, XML, GML and GeoJSON) and spatially-enabled RDBMS (PostGIS and MonetDB) into RDF graphs using well-known vocabularies like GeoSPARQL and stSPARQL, but without being tightly coupled to a specific vocabulary. GeoTriples has been developed in European projects LEO and Melodies and has been used to transform many geospatial data sources into linked data. We study the performance of GeoTriples experimentally using large publicly available geospatial datasets, and show that GeoTriples is very efficient and scalable especially when its mapping processor is implemented using Apache Hadoop

    Wildfire monitoring using satellite images, ontologies and linked geospatial data

    Get PDF
    Advances in remote sensing technologies have allowed us to send an ever-increasing number of satellites in orbit around Earth. As a result, Earth Observation data archives have been constantly increasing in size in the last few years, and have become a valuable source of data for many scientific and application domains. When Earth Observation data is coupled with other data sources many pioneering applications can be developed. In this paper we show how Earth Observation data, ontologies, and linked geospatial data can be combined for the development of a wildfire monitoring service that goes beyond applications currently deployed in various Earth Observation data centers. The service has been developed in the context of European project TELEIOS that faces the challenges of extracting knowledge from Earth Observation data head-on, capturing this knowledge by semantic annotation encoded using Earth Observation ontologies, and combining these annotations with linked geospatial data to allow the development of interesting applications

    A spatial column-store to triangulate the Netherlands on the fly

    Get PDF
    3D digital city models, important for urban planning, are currently constructed from massive point clouds obtained through airborne LiDAR (Light Detection and Ranging). They are semantically enriched with information obtained from auxiliary GIS data like Cadastral data which contains information about the boundaries of properties, road networks, rivers, lakes etc. Technical advances in the LiDAR data acquisition systems made possible the rapid acquisition of high resolution topographical information for an entire country. Such data sets are now reaching the trillion points barrier. To cope with this data deluge and provide up-to-date 3D digital city models on demand current geospatial management strategies should be re-thought. This work presents a column-oriented Spatial Database Management System which provides in-situ data access, effective data skipping, efficient spatial operations, and interactive data visualization. Its efficiency and scalability is demonstrated using a dense LiDAR scan of The Netherlands consisting of 640 billion points and the latest Cadastral information, and compared with PostGIS

    Improving knowledge discovery from synthetic aperture radar images using the linked open data cloud and Sextant

    Get PDF
    In the last few years, thanks to projects like TELEIOS, the linked open data cloud has been rapidly populated with geospatial data some of it describing Earth Observation products (e.g., CORINE Land Cover, Urban Atlas). The abundance of this data can prove very useful to the new missions (e.g., Sentinels) as a means to increase the usability of the millions of images and EO products that are expected to be produced by these missions. In this paper, we explain the relevant opportunities by demonstrating how the process of knowledge discovery from TerraSAR-X images can be improved using linked open data and Sextant, a tool for browsing and exploration of linked geospatial data, as well as the creation of thematic maps

    Wildfire monitoring via the integration of remote sensing with innovative information technologies

    Get PDF
    In the Institute for Space Applications and Remote Sensing of the National Observatory of Athens (ISARS/NOA) volumes of Earth Observation images of different spectral and spatial resolutions are being processed on a systematic basis to derive thematic products that cover a wide spectrum of applications during and after wildfire crisis, from fire detection and fire-front propagation monitoring, to damage assessment in the inflicted areas. The processed satellite imagery is combined with auxiliary geo-information layers, including land use/land cover, administrative boundaries, road and rail network, points of interest, and meteorological data to generate and validate added-value fire-related products. The service portfolio has become available to institutional End Users with a mandate to act on natural disasters and that have activated Emergency Support Services at a European level in the framework of the operational GMES projects SAFER and LinkER. Towards the goal of delivering integrated services for fire monitoring and management, ISARS/NOA employs observational capacities which include the operation of MSG/SEVIRI and NOAA/AVHRR receiving stations, NOA's in-situ monitoring networks for capturing meteorological parameters to generate weather forecasts, and datasets originating from the European Space Agency and third party satellite operators. The qualified operational activity of ISARS/NOA in the domain of wildfires management is highly enhanced by the integration of state-of-the-art Information Technologies that have become available in the framework of the TELEIOS (EC/ICT) project. TELEIOS aims at the development of fully automatic processing chains reliant on a) the effective storing and management of the large amount of EO and GIS data, b) the post-processing refinement of the fire products using semantics, and c) the creation of thematic maps and added-value services. The first objective is achieved with the use of advanced Array Database technologies, such as MonetDB, to enable efficiency in accessing large archives of image data and metadata in a fully transparent way, without worrying for their format, size, and location, as well as efficiency in processing such data using state-of-the-art implementations of image processing algorithms expressed in a high-level Scientific Query Language (SciQL). The product refinement is realized through the application of update operations that incorporate human evidence and human logic, with semantic content extracted from thematic information coming from auxiliary geo-information layers and sources, for reducing considerably the number of false alarms in fire detection, and improving the credibility of the burnt area assessment. The third objective is approached via the combination of the derived fire-products with Linked Geospatial Data, structured accordingly and freely available in the web, using Semantic Web technologies. These technologies are built on top of a robust and modular computational environment, to facilitate several wildfire applications to run efficiently, such as real-time fire detection, fire-front propagation monitoring, rapid burnt area mapping, after crisis detailed burnt scar mapping, and time series analysis of burnt areas. The approach adopted allows ISARS/NOA to routinely serve requests from the end-user community, irrespective of the area of interest and its extent, the observation time period, or the data volume involved, granting the opportunity to combine innovative IT solutions with remote sensing techniques and

    Managing big, linked, and open earth-observation data: Using the TELEIOS/LEO software stack

    Get PDF
    Big Earth-observation (EO) data that are made freely available by space agencies come from various archives. Therefore, users trying to develop an application need to search within these archives, discover the needed data, and integrate them into their application. In this article, we argue that if EO data are published using the linked data paradigm, then the data discovery, data integration, and development of applications becomes easier. We present the life cycle of big, linked, and open EO data and show how to support their various stages using the software stack developed by the European Union (EU) research projects TELEIOS and the Linked Open EO Data for Precision Farming (LEO). We also show how this stack of tools can be used to implement an operational wildfire-monitoring service
    corecore