GIS Navigation Boosted by Column Stores

Foteini Alvanaki?, Romulo Goncalves!, Milena Ivanova® 3, Martin Kersten?, and Kostis Kyzirakos?

'NLeSC Amsterdam, The Netherlands {r.goncalves@esciencecenter.nl}

2Centrum Wiskunde & Informatica, Amsterdam, The Netherlands {{f.alvanaki,martin.kersten,kostis.kyzirakos} @cwi.nl}

3NuoDB Cambridge MA, USA {mivanova@nuodb.com}

ABSTRACT

Earth observation sciences, astronomy, and seismology have
large data sets which have inherently rich spatial and geospa-
tial information. In combination with large collections of
semantically rich objects which have a large number of the-
matic properties, they form a new source of knowledge for
urban planning, smart cities and natural resource manage-
ment.

Modeling and storing these properties indicating the re-
lationships between them is best handled in a relational
database. Furthermore, the scalability requirements posed
by the latest 26-attribute light detection and ranging (LI-
DAR) data sets are a challenge for file-based solutions.

In this demo we show how to query a 640 billion point data
set using a column store enriched with GIS functionality.
Through a lightweight and cache conscious secondary index
called Imprints, spatial queries performance on a flat table
storage is comparable to traditional file-based solutions. All
the results are visualised in real time using QGIS.

1. INTRODUCTION

Point cloud data (or LIDAR) provide a wealth of infor-
mation for various applications. In combination with auxil-
iary GIS data like cadastral data which contains information
about the boundaries of properties, topological data that
describe buildings, roads, rivers, lakes etc. and large collec-
tions of semantically rich objects which have a large number
of properties, they form a new source of knowledge for urban
planning, smart cities and natural resource management.

The production of point cloud data sets have increased in
size over the past years to Tera byte scale due to its easy col-
lection using airborne laser scanning. Airborne laser scan-
ning is a remote sensing technology which is able to rapidly
collect data at global scale. It collects large amounts of point
data to be the base of digital surface or elevation models.
The principle behind the measurements is as follows: the
sensor emits a laser pulse through the terrain in a predefined

2All contributions were done while working at the NLeSC.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.

Proceedings of the VLDB Endowment, Vol. 8, No. 12

Copyright 2015 VLDB Endowment 2150-8097/15/08.

1956

direction and receives the reflected laser beam. Knowing the
speed of light, the distance of the object can be calculated.

Such data is often combined with data from stationary
laser scan devices which gather the ground-based structures.
The de-facto standard to store and distribute the acquired
data is the LAS [1]. The number of files and their density
is increasing per scan base due to the sampling density of
LIDAR sensors. From few million points per file, we soon
will have billion points per file.

Storing and querying massive point cloud data is a chal-
lenging task. Just considering the number of properties, e.g.
color, angle of scan, data etc., attached to each point gives
a notion of the extent of the problem. The current version
for LAS has a total of 23 properties excluding the X, Y, and
Z coordinates.

The database community could not stay away from any
attempt to efficiently manage massive point cloud data. The
first approaches on storing and querying point cloud data
already exist with the most known among them being the
point cloud extension provided by Oracle and PostgreSQL.
Both systems deviate from the established approach of rep-
resenting geometries in a DBMS using a specialised geom-
etry data type like the data type POINT as defined by the
OpenGIS Simple Features Access standard [9]. Both sys-
tems base their performance on the physical reorganisation
of data into blocks with each block being a condensed repre-
sentation of multiple points. The point cloud tables contain
then a number of blocks. This allows PostgreSQL and Or-
acle to reduce the space requirements. It also allows them
to reduce the access times since locating a block that con-
tains the data of interest (and possibly more) is faster when
searching through blocks (less number of elements) than
searching through each single point.

We deviate significantly from the aforementioned appro-
aches and opt for a simple, yet efficient, storage model. Point
cloud data is stored in a flat table where a different column
is used for storing the X, Y, Z coordinates and the 23 prop-
erties of each point. Through a lightweight and cache con-
scious secondary index called Imprints [16] for a coarse fil-
tering step followed by a regular grid for filtering refinement,
it is possible to have the same functionality as a traditional
spatial DBMS using spatial indexes.

During the demo session, the audience will see how our
techniques offer the ground to design a new “spatially-en-
abled” DBMS. Inline with geospatial demonstration style,
the DBMS is integrated with a visualisation tool for user
interaction using pre-defined queries or user defined queries.

The remainder of the paper is organized as follows. In Sec-
tion 2, we introduce column-stores, and file-based solutions
and indexing strategies for point cloud data. In Section 3,

we describe our storage and query model. An overview of
the demonstration is given in Section 4 followed by conclu-
sions in Section 5.

2. BACKGROUND

In this section, we introduce both DBMS and file base ap-
proaches. For DBMS based approaches we identify the ma-
jor differences between column-oriented and row-oriented ar-
chitectures and why column-oriented architectures are more
suitable for GIS systems. Furthermore, we explain how
spatial information is represented and queried in the re-
lational model context. For file based approaches, we re-
visit the techniques employed for indexing and physically
re-organising the spatial data shared with traditional “spa-
tially-enabled” DBMS.

2.1 Column-stores

In the recent years we have seen the introduction of a num-
ber of column-oriented database systems [10, 17]. For read-
intensive analytical processing workload, such as the ones
encountered in data warehouses, column-oriented architec-
tures (column-stores) offer order-of-magnitude gains com-
pared to traditional row-oriented architectures (row-stores).

2.1.1 MonetDB

MonetDB is a modern in-memory column-store database
system, designed in the late 90’s with a proven track record
in various fields [12, 11] *. MonetDB has recently been ex-
tended with a novel lightweight secondary indexing scheme
called column imprints [16], which we challenge in this demo.

A column imprint, or just imprints, is a collection of 64-
bit vectors, each indexing data points that fit into a single
cache line. Each of the 64 bits is associated with a range
of values. A bit is set to 1 when the cache line indexed by
the vector contains values in the corresponding range. The
64 ranges are global to an imprint and are decided based on
the distribution of the values of the indexed column.

As described by the authors in [16], an imprint is used
during query evaluation to limit data access, and thus min-
imise memory traffic. The compression for imprints is CPU
friendly and exploits the empirical observation that data
often exhibits local clustering or partial ordering as a side
effect of the construction process. Most importantly, col-
umn imprint compression remains effective and robust even
in the case of unclustered data, while other state-of-the-art
solutions fail. The storage overhead, when experimenting
with real world data sets, is just a few percent over the size
of the columns being indexed.

We have selected to implement and test our approach in
the context of MonetDB, not only because MonetDB is a
mature representative of the column store family but mostly
because it is an open source system that has been shown
to perform well on similar scenarios [13]. Additionally, the
operator-at-the-time paradigm followed by MonetDB pro-
vides an environment that allows for relatively easy devel-
opment and incorporation of new operators that can benefit
immediately from all the optimisation techniques present in
MonetDB.

2.2 File-based solutions

File based solutions work directly with the standard LAS
format and with one of its compression formats, Rapidlasso’s

IThe system, including our extensions, can be downloaded
from http://www.monetdb.org

1957

LAZ [2] or ESRI ZLAS [3]. Such solutions are now en-
countering scalability problems. The new data acquisition
technologies are providing high definition scans which in-
creases the number of files to process and their size, and
thus increase the number of data management challenges.
For example, our test data Actueel Hoogtebestand Neder-
land 2 (AHN2) [4], is stored and distributed in more than
60,000 LAZ files. It is already a large amount of files to
be inspected for a simple selection by a robust file-based
solution like Rapidlasso LAStools [5]. In [18], the authors
for LAStools had to use a DBMS to store the metadata of
each file in order to avoid the inspection of each file header,
and run a lassort and lasindex to boost query performance.
Such ETL process had the same cost as the data loading
cost of a DBMS.

Furthermore, the complexity of ad-hoc queries cannot be
expressed using a file-based solution, thus a declarative lan-
guage for expressing such queries becomes a necessity. A
declarative query language like SQL allows the user to eas-
ily express queries that combine numerous data sources like
time-series, vector data, raster images etc. Hence, a front-
end with a declarative language on top of a middle layer
for workflow optimisation becomes also a requirement. In-
stead of reinventing the wheel, the extension of an exist-
ing DBMS is preferable when users want to combine, for
example, vector geometries and point cloud data in their
queries. RDBMS are also optimised for efficient 10 strate-
gies, i.e. scanning, pre-fetching, and cache management.

2.3 Indexing point cloud data

File-based solutions employ two indices for indexing point
cloud data: space filling curves and octrees. A space filling
curve is a curve whose range contains the entire 2-dimen-
sional unit square. Space filling curves reduces the dimen-
sionality of the data by mapping for example the X and Y
coordinates in one dimension. Sorting the point cloud data
using space filling curves is a common technique used by
spatial DBMS and file-based solutions. A space filling curve
is useful to exploit the spatial coherence of the data through
spatial location codes [19].

In the case of Oracle spatial, the point cloud data type
blocks can be sorted using a Hilbert space-filling curve [15].
Such spatial order is in most of the cases not exploited by
the used compression techniques. An exception is Post-
greSQL which uses compression techniques based on the
spatial continuity of the blocks to offer better storage [18].
The same principles are followed by LAStools through las-
sort and lasindez.

3. ARCHITECTURE

In this section, we present the storage model that we chose
for storing the point cloud data, how we loaded the full
AHN2 dataset in MonetDB and how we process spatial se-
lection queries over the point cloud data.

3.1 Storage model

We deviate significantly from the block storage model em-
ployed by other DBMS systems for storing point cloud data
and opt for a simpler, yet efficient, storing scheme. In our
approach a flat table is used for storing the point cloud data,
where a different column is used for storing the X, Y, Z co-
ordinates and the 23 properties of each point. As a result,
each point is stored as a different tuple in the flat table.

In terms of amount of storage needed, the flat table stor-
age requires more space. However, it is more flexible to ex-
ploit compression techniques which are more advantageous
for column-stores such as run length encoding.

3.2 Database Loading

In most of the systems, the dominant part of loading stems
from the conversion of the LAZ files into CSV format and
the subsequent parsing of the CSV records by the database
engine. We implemented a binary loader that is tailored to
the flat storage model that we chose for storing point cloud
data. The loader takes as input a LAS/LAZ file and for each
property it generates a new file that is the binary dump of a
C-array containing the values of the property for all points.
Then, the generated files are appended to each column of the
flat table using the bulk loading operator COPY BINARY?.
Our approach allows us to load and index the full AHN2
dataset that consists of approximately 640 billion points in
less than one day, while the point cloud extension of Post-
greSQL, based on the results presented in [14], should re-
quire almost a week for the same task.

MonetDB uses for the evaluation of geospatial predicates
a secondary index, column imprints (c.f. Section 2.1.1), in-
stead of a primary spatial index such as R-tree. Its creation
is triggered when it encounters a range query for the first
time. Imprints storage comes with a 5-12% storage over-
head. For the flat-table storage, MonetDB requires the least
total storage mainly due to the columnar organisation and
the small amount of storage required by the column imprints
index [18].

3.3 Query Model

MonetDB has an SQL interface to the Simple Features Ac-
cess standard of the Open Geospatial Consortium(OGC) [9]
with support for the objects and functions defined in the
specification. The spatial query model that is used by Mon-
etDB follows the well established two-step approach of fil-
tering and refinement.

In the filtering step, the majority of points that do not
satisfy the spatial predicate for a given geometry G are
identified and disregarded using a fast approximation of the
predicate. MonetDB performs the filtering using the column
imprints

The refinement step operates on the results of the filtering
step that produced a superset of the solution. During this
step, the spatial predicate is evaluated against the precise
geometry G. The refinement can be very expensive, espe-
cially when the geometries are complex. Thus, checking
exhaustively each point is not desirable. MonetDB, creates
a regular grid over the point geometries selected in the fil-
tering step and assigns each geometry to a grid cell. The
spatial relation is then evaluated between each non-empty
cell and the geometry G. This allows MonetDB to decide
whether a grid cell satisfies or not the spatial relation in a
single step. However, for cells that overlap the boundary of
the given geometry G, an extra step is needed. All points
within such cells have to be checked exhaustively and a de-
cision for each of them individually should be taken. The
efficiency of this two steps has been tested in the context of
point cloud data using the AHN2 data set. The results are
compared with a file-based solution, Rapidlasso LAStools,
and PostgreSQL [18].

’https://www.monetdb.org/Documentation/Cookbooks/
SQLrecipes/BinaryBulkLoad

1958

Figure 1: LIDAR point cloud dataset

4. DEMONSTRATION OVERVIEW

During this demo, the users will explore various kinds
of geospatial data interacting with the geospatial module of
MonetDB, a column-oriented database management system.
The demonstration comprises two scenarios. In the first
scenario, the audience will be familiarised with the datasets
that will be used throughout the demo and will compare the
functionality and the performance of a file-based approach
and a DBMS based approach. In the second scenario we
will stress that a “spatially-enabled” DBMS allows us to run
ad-hoc queries for selecting information using both spatial
and thematic criteria. Both scenarios will demonstrate the
feasibility of using a column-store DBMS as a back-end for
geospatial visualisation.

The visualisation tool that will be used is QGIS [6]. QGIS
is a cross-platform free and open-source desktop GIS appli-
cation which supports numerous vector and raster file for-
mats along with connectors to various “spatially-enabled”
DBMS. It provides data viewing, editing, and analysis capa-
bilities and allows users to create custom maps that consist
of various layers using different coordinate reference systems.

For the purposes of the demonstration, we will use three
datasets:

1. Actueel Hoogtebestand Nederland 2 (AHNZ2). AHN2
dataset [4] covers the topography of the Netherlands
and is freely distributed as open data. The sample
density is 6 to 10 points per square meter for the entire
country, resulting in 640 billion points organised in
60,185 files. Such files are in LAZ format of total size
640GB. Figure 1 presents a 3D visualisation of the
AHNZ2 dataset.

. OpenStreetMap (OSM). OSM [7] maintains a global
editable map that depends on users to provide the in-
formation needed for its improvement and evolution.
OSM is not restricted to information of small gran-
ularity e.g. on national level, but also includes ample
information about the road network, the river network,
points of interest etc.

. Urban Atlas (UA). UA [8] is a product of the European
Environment Agency that provides pan-European in-
formation regarding the land use and land cover data
for urban zones with more than 100,000 inhabitants.
Figure 2 presents a combined 2D visualisation of the
UA and OSM datasets.

Below we present the demonstration scenarios in more
detail.

Figure 2: Roads, rivers and land cover data from
the OpenStreetMap and Urban Atlas datasets

4.1 First Scenario

The users become acquainted with the datasets and two
approaches for handling such data. For this scenario, we
will use both a “spatially-enabled” DBMS and a file-based
solution for performing a functional and performance com-
parison between them.

During the functional comparison, the attendees of the
demonstration will have the opportunity to compare the
expressiveness of the declarative query language SQL, en-
hanced with geospatial capabilities, to the limited function-
ality provided by the file-based approach by comparing the
queries that can be executed in each of the systems.

During the performance comparison, predefined queries
over the three datasets will be executed on both the file-
based and the DBMS approach and the time to get the re-
sponses will be compared. Since the file-based approach
supports only queries over a single data source, the queries
that will be executed during this scenario will be of the form
“select all LIDAR points within a given region” or “select
all roads that intersect a given region”, etc..

In order to ease the comparison of the two systems and
increase the involvement of the users the results of all queries
will be visualised using QGIS [6].

4.2 Second Scenario

In the second scenario, we will stress the fact that a “spa-
tially-enabled” DBMS allows us to run complex queries over
multiple datasets. This allows for the discovering of the re-
lations between the various datasets not only through their
spatial dimension but through their thematic extent as well.

We will provide the attendees with a set of pre-defined
queries like “select all LIDAR points that are near a given
area that is characterised as a fast transit road according to
the Urban Atlas nomenclature” and “compute the average
elevation of the LIDAR points that are near a given area that
is characterised as a fast transit road according to the Urban
Atlas nomenclature” that will help them discover relations
between the various datasets. In addition, the users will
have the option to create and execute queries of their own,
identifying relations of their interest and obtaining further
insights on the datasets.

As before, the results of all queries will be visualized using
QGIS. In addition, users will have the option to see the plans
of the queries and the execution time spent in each operator.
This will give them a more detailed view on the specifities
of a column store and the benefits of using it for evaluating
spatial queries.

1959

S. CONCLUSIONS

Although column stores have a proven track record in
business analytics, their pros- and cons- for GIS applications
are not yet well understood. Hence, we have implemented a
“spatially-enabled” DBMS which iteratively loads data from
different sources and converts it into a common format to
enable 3D operations and analyses, and semantic properties
management. It bridges the gap between the needs of GIS
applications and the available DBMS technologies.

This demo showcases a proof of concept implementation of
GIS application in a column-store. The users, through pre-
defined and user defined queries, are able to interact with a
point cloud database enriched with semantics from different
sources.

6. ACKNOWLEDGMENTS

The work reported here is partly funded by two NLeSC
projects, Massive Point Clouds for eScience (project code:
027.012.101) and Big Data Analytics in the Geo-Spatial Do-
main (project code: 027.013.703), the NWO project COM-
MIT/, the EU projects Human Brain Project (604102) and
LEO (611141).

7. REFERENCES

[1] http://www.asprs.org/a/society/committees/
lidar/lidar_format.html.

http://www.laszip.org.

http://www.arcgis.com.

http://www.ahn.nl.

http://rapidlasso.com.

http://wuw.qgis.org.
http://wuw.openstreetmap.org.
http://wuw.eea.europa.eu/data-and-maps/data/
urban-atlas.

Open Geospatial Consortium. OpenGIS
Implementation Specification for Geographic
information - Simple feature access - Part 2: SQL
option. OpenGIS Implementation Standard, 2010.

P. A. Boncz and M. L. Kersten. MIL primitives for
querying a fragmented world. VLDB J., 1999.

P. A. Boncz, S. Manegold, and M. L. Kersten.
Database architecture evolution: Mammals flourished
long before dinosaurs became extinct. PVLDB, 2009.
S. Manegold, P. A. Boncz, and M. L. Kersten.
Optimizing main-memory join on modern hardware.
IEEE TKDE, 2002.

O. Martinez-Rubi et al. A column-store meets the
point cloud. FOSS/G-FEurope, 2014.

S. Ottens. Loading AHN2 into PostgreSQL
pointcloud. http://www.geodan.nl/
loading-ahn2-into-postgresql-pointcloud/, 2014.
H. Sagan. Hilbert’s space-filling curve. In Space-Filling
Curves, pages 9-30. Springer New York, 1994.

L. Sidirourgos and M. L. Kersten. Column imprints: a
secondary index structure. In SIGMOD, 2013.

M. Stonebraker et al. C-store: A column-oriented
DBMS. In VLDB, 2005.

P. van Oosterom et al. Massive point cloud data
management: design, implementation and execution of
a point cloud benchmark. Computer Graphics, 2015.
P. van Oosterom and T. Vijlbrief. The spatial location
code. SDH, 1996.

EEE SRS

RN S O WO

