176 research outputs found

    Student Piano Trio Concert: Ae-Sil Kim, Violin; Kyung-Jin Lee, Cello; Koo-Soon Youn, Piano; March 31, 1973

    Get PDF
    Centennial East Recital HallSaturday EveningMarch 31, 19738:15 p.m

    Growth differentiation factor 11 locally controls anterior-posterior patterning of the axial skeleton.

    Get PDF
    Growth and differentiation factor 11 (GDF11) is a transforming growth factor ÎČ family member that has been identified as the central player of anterior-posterior (A-P) axial skeletal patterning. Mice homozygous for Gdf11 deletion exhibit severe anterior homeotic transformations of the vertebrae and craniofacial defects. During early embryogenesis, Gdf11 is expressed predominantly in the primitive streak and tail bud regions, where new mesodermal cells arise. On the basis of this expression pattern of Gdf11 and the phenotype of Gdf11 mutant mice, it has been suggested that GDF11 acts to specify positional identity along the A-P axis either by local changes in levels of signaling as development proceeds or by acting as a morphogen. To further investigate the mechanism of action of GDF11 in the vertebral specification, we used a Cdx2-Cre transgene to generate mosaic mice in which Gdf11 expression is removed in posterior regions including the tail bud, but not in anterior regions. The skeletal analysis revealed that these mosaic mice display patterning defects limited to posterior regions where Gdf11 expression is deficient, whereas displaying normal skeletal phenotype in anterior regions where Gdf11 is normally expressed. Specifically, the mosaic mice exhibited seven true ribs, a pattern observed in wild-type (wt) mice (vs. 10 true ribs in Gdf11-/- mice), in the anterior axis and nine lumbar vertebrae, a pattern observed in Gdf11 null mice (vs. six lumbar vertebrae in wt mice), in the posterior axis. Our findings suggest that GDF11, rather than globally acting as a morphogen secreted from the tail bud, locally regulates axial vertebral patterning

    Cell type–dependent variation in paracrine potency determines therapeutic efficacy against neonatal hyperoxic lung injury

    Get PDF
    AbstractBackground aimsThe aim of this study was to determine the optimal cell type for transplantation to protect against neonatal hyperoxic lung injury. To this end, the in vitro and in vivo therapeutic efficacies and paracrine potencies of human umbilical cord blood–derived mesenchymal stromal cells (HUMs), human adipose tissue–derived mesenchymal stromal cells (HAMs) and human umbilical cord blood mononuclear cells (HMNs) were compared.MethodsHyperoxic injury was induced in vitro in A549 cells by challenge with H2O2. Alternatively, hyperoxic injury was induced in newborn Sprague-Dawley rats in vivo by exposure to hyperoxia (90% oxygen) for 14 days. HUMs, HAMs or HMNs (5 × 105 cells) were given intratracheally at postnatal day 5.ResultsHyperoxia-induced increases in in vitro cell death and in vivo impaired alveolarization were significantly attenuated in both the HUM and HAM groups but not in the HMN group. Hyperoxia impaired angiogenesis, increased the cell death and pulmonary macrophages and elevated inflammatory cytokine levels. These effects were significantly decreased in the HUM group but not in the HAM or HMN groups. The levels of human vascular endothelial growth factor and hepatocyte growth factor produced by donor cells were highest in HUM group, followed by HAM group and then HMN group.ConclusionsHUMs exhibited the best therapeutic efficacy and paracrine potency than HAMs or HMNs in protecting against neonatal hyperoxic lung injury. These cell type-dependent variations in therapeutic efficacy might be associated or mediated with the paracrine potency of the transplanted donor cells

    Fabrication and evaluation of bilateral Helmholtz radiofrequency coil for thermo-stable breast image with reduced artifacts

    Get PDF
    PURPOSE: The positron emission tomography (PET)-magnetic resonance (MR) system is a newly emerging technique that yields hybrid images with high-resolution anatomical and metabolic information. With PET-MR imaging, a definitive diagnosis of breast abnormalities will be possible with high spatial accuracy and images will be acquired for the optimal fusion of anatomic locations. Therefore, we propose a PET-compatible two-channel breast MR coil with minimal disturbance to image acquisition which can be used for simultaneous PET-MR imaging in patients with breast cancer. MATERIALS AND METHODS: For coil design and construction, the conductor loops of the Helmholtz coil were tuned, matched, and subdivided with nonmagnetic components. Element values were optimized with an electromagnetic field simulation. Images were acquired on a GE 600 PET-computed tomography (CT) and GE 3.0 T MR system. For this study, we used the T1-weighted image (volunteer; repetition time (TR), 694 ms; echo time (TE), 9.6 ms) and T2-weighted image (phantom; TR, 8742 ms; TE, 104 ms) with the fast spin-echo sequence. RESULTS: The results of measuring image factors with the proposed radiofrequency (RF) coil and standard conventional RF coil were as follows: signal-to-noise ratio (breast; 207.7 vs. 175.2), percent image uniformity (phantom; 89.22%-91.27% vs. 94.63%-94.77%), and Hounsfield units (phantom; -4.51 vs. 2.38). CONCLUSIONS: Our study focused on the feasibility of proposed two-channel Helmholtz loops (by minimizing metallic components and soldering) for PET-MR imaging and found the comparable image quality to the standard conventional coil. We believe our work will help significantly to improve image quality with the development of a less metallic breast MR coil

    Lactobacillus paracasei ATG-E1 improves particulate matter 10 plus diesel exhaust particles (PM10D)-induced airway inflammation by regulating immune responses

    Get PDF
    Particulate matter (PM) exposure can adversely affect respiratory function. Probiotics can alleviate the inflammatory responses in respiratory diseases. We examined the protective effects of Lactobacillus paracasei ATG-E1 isolated from the feces of a newborn baby against airway inflammation in a PM10 plus diesel exhaust particle (DEP) (PM10D)-induced airway inflammation model. BALB/c mice were exposed to PM10D by intranasal injection three times at 3-day intervals for 12 days, and L. paracasei ATG-E1 was administered orally for 12 days. Analysis of immune cell population and expression of various inflammatory mediators and gut barrier-related genes were determined in bronchoalveolar lavage fluid (BALF), lung, peyer’s patch, and small intestine. A histological analysis of the lungs was performed. In addition, the in vitro safety and their safety in genomic analyses were examined. L. paracasei ATG-E1 was found to be safe in vitro and by genomic analysis. L. paracasei ATG-E1 suppressed neutrophil infiltration and the number of CD4+, CD4+CD69+, CD62L–CD44+high, CD21/35+B220+, and Gr-1+CD11b+ cells, as well as the expression of inflammatory mediators, including chemokine (C-X-C motif) ligand (CXCL)-1, macrophage inflammatory protein (MIP)-2, interleukin (IL)-17a, tumor necrosis factor (TNF)-α, and IL-6 in BALF and lungs in PM10D-induced airway inflammation. It protected against histopathological damage in the lungs of mice with PM10D-induced airway inflammation. L. paracasei ATG-E1 concomitantly increased the expression levels of the gut barrier function-related genes occludin, claudin-1, and IL-10 in the small intestine, with an increased number of CD4+ and CD4+CD25+ immune cells in the peyer’s patch. L. paracasei ATG-E1 suppressed immune activation and airway inflammatory responses in the airways and lungs by restoring the lung damage by PM10D. It also regulated intestinal immunity and ameliorated the gut barrier function in the ileum. These results indicate the potential of L. paracasei ATG-E1 as an protective and therapeutic agent against airway inflammation and respiratory diseases

    Stratification of rate of lymph node metastasis according to risk factors and oncologic outcomes in patients who underwent radical resection for rectal neuroendocrine tumors

    Get PDF
    Purpose Most predictive factors for lymph node metastasis in rectal neuroendocrine tumors (NETs) have been based on local and endoscopic resection. We aimed to evaluate the risk factors for lymph node metastasis in patients who underwent radical resection for rectal NETs and stratify the risk of lymph node metastasis. Methods Sixty-four patients who underwent radical resection for rectal NETs between January 2001 and January 2018 were included. We investigated the risk factors of lymph node metastasis using clinicopathologic data. We also performed a risk stratification for lymph node metastases using the number of previously known risk factors. For oncologic outcomes, the 5-year overall survival and recurrence-free survival were evaluated in both groups. Results Among the patients who underwent radical surgery, 32 (50.0%) had lymph node metastasis and 32 (50.0%) had non–lymph node metastasis. In the multivariable analysis, only the male sex was identified as a risk factor for lymph node metastasis (odds ratio, 3.695; 95% confidence interval, 1.128–12.105; P=0.031). When there were 2 or more known risk factors, the lymph node metastasis rate was significantly higher than when there were one or no risk factors (odds ratio, 3.667; 95% confidence interval, 1.023–13.143; P=0.046). There was also no statistical difference between the 2 groups in 5-year overall survival (P=0.431) and 5-year recurrence-free survival (P=0.144). Conclusion We found that the rate of lymph node metastasis increased significantly when the number of known risk factors is 2 or more
    • 

    corecore