385 research outputs found

    Preparation and evaluation of polymeric microparticulates for improving cellular uptake of gemcitabine

    Get PDF
    Ji-Ho Lim1,*, Sung-Kyun You1,*, Jong-Suep Baek1, Chan-Ju Hwang1, Young-Guk Na1, Sang-Chul Shin2, Cheong-Weon Cho11College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Gungdong, Yuseonggu, Daejeon, South Korea, 2College of Pharmacy, Chonnam National University, Buggu, Gwangju, South Korea *These authors contributed equally to this workBackground: Gemcitabine must be administered at high doses to elicit the required therapeutic response because of its very short plasma half-life due to rapid metabolism. These high doses can have severe adverse effects.Methods: In this study, polymeric microparticulate systems of gemcitabine were prepared using chitosan as a mucoadhesive polymer and Eudragit L100-55 as an enteric copolymer. The physicochemical and biopharmaceutical properties of the resulting systems were then evaluated.Results: There was no endothermic peak for gemcitabine in any of the polymeric gemcitabine microparticulate systems, suggesting that gemcitabine was bound to chitosan and Eudragit L100-55 and its crystallinity was changed into an amorphous form. The polymeric gemcitabine microparticulate system showed more than 80% release of gemcitabine in 30 minutes in simulated intestinal fluid. When mucin particles were incubated with gemcitabine polymeric microparticulates, the zeta potential of the mucin particles was increased to 1.57 mV, indicating that the polymeric gemcitabine microparticulates were attached to the mucin particles. Furthermore, the F53 polymeric gemcitabine microparticulates having 150 mg of chitosan showed a 3.8-fold increased uptake of gemcitabine into Caco-2 cells over 72 hours compared with gemcitabine solution alone.Conclusion: Overall, these results suggest that polymeric gemcitabine microparticulate systems could be used as carriers to help oral absorption of gemcitabine.Keywords: gemcitabine, polymeric microparticulates, mucoadhesive, enteric coating, cellular uptake, oral absorptio

    Highly sensitive colorimetric detection of allergies based on an immunoassay using peroxidase-mimicking nanozymes

    Get PDF
    Nanomaterials that exhibit enzyme-like characteristics, which are called nanozymes, have recently attracted significant attention due to their potential to overcome the intrinsic limitations of natural enzymes, such as low stability and relatively high cost for preparation and purification. In this study, we report a highly efficient colorimetric allergy detection system based on an immunoassay utilizing the peroxidase- mimicking activity of hierarchically structured platinum nanoparticles (H-Pt NPs). The H-Pt NPs had a diameter of 30 nm, and were synthesized by a seed-mediated growth method, which led to a significant amount of peroxidase-like activity. This activity mainly occurs because of the high catalytic power of the Pt element, and the fact that the H-Pt NPs have a large surface area available for catalytic events. The H-Pt NPs were conjugated to an antibody for the detection of immunoglobulin E (IgE) in the analytes; IgE is a representative marker for the diagnosis of allergies. They were then successfully integrated into a conventionally used allergy diagnostic test, the ImmunoCAP diagnostic test, as a replacement for natural signaling enzymes. Using this strategy, total and specific IgE levels were detected within 5 min at room temperature, with high specificity and sensitivity. The practical utility of the immunoassay was also successfully verified by correctly determining the levels of both total and specific IgE in real human serum samples with high precision and reproducibility. The present H-Pt NP-based immunoassay system would serve as a platform for rapid, robust, and convenient analysis of IgE, and can be extended to the construction of diagnostic systems for a variety of clinically important target molecules.11Ysciescopu

    G-protein-coupled receptor 81 promotes a malignant phenotype in breast cancer through angiogenic factor secretion

    Get PDF
    G-protein-coupled receptor 81 (GPR81) functions as a receptor for lactate and plays an important role in the regulation of anti-lipolytic effects in adipocytes. However, to data, a role for GPR81 in the tumor microenvironment has not been clearly defined. Here, GPR81 expression in breast cancer patients and several breast cancer cell lines was significantly increased compared with normal mammary tissues and cells. GPR81 knockdown resulted in impaired breast cancer growth and led to apoptosis both in vitro and in vivo. Furthermore, the inhibition of GPR81 signaling suppressed angiogenesis through a phosphoinositide 3-OH kinase (PI3K)/Akt-cAMP response element binding protein (CREB) pathway, which led to decreased production of the pro-angiogenic mediator amphiregulin (AREG). Overall, these findings identify GPR81 as a tumor-promoting receptor in breast cancer progression and suggest a novel mechanism that regulates GPR81-dependent activation of the PI3K/Akt signaling axis in tumor microenvironment.open

    Vascular effects of estrogen in type II diabetic postmenopausal women

    Get PDF
    AbstractOBJECTIVESWe assessed the effects of estrogen on vascular dilatory and other homeostatic functions potentially affected by nitric oxide (NO)-potentiating properties in type II diabetic postmenopausal women.BACKGROUNDThere is a higher cardiovascular risk in diabetic women than in nondiabetic women. This would suggest that women with diabetes do not have the cardioprotection associated with estrogen.METHODSWe administered placebo or conjugated equine estrogen, 0.625 mg/day for 8 weeks, to 20 type II diabetic postmenopausal women in a randomized, double-blinded, placebo-controlled, cross-over design.RESULTSCompared with placebo, estrogen tended to lower low-density lipoprotein (LDL) cholesterol levels by 15 ± 23% (p = 0.007) and increase high-density lipoprotein (HDL) cholesterol levels by 8 ± 16% (p = 0.034). Thus, the ratio of LDL to HDL cholesterol levels significantly decreased with estrogen, by 20 ± 24%, as compared with placebo (p = 0.001). Compared with placebo, estrogen tended to increase triglyceride levels by 16 ± 48% and lower glycosylated hemoglobin levels by 3 ± 13% (p = 0.295 and p = 0.199, respectively). However, estrogen did not significantly improve the percent flow-mediated dilatory response to hyperemia (17 ± 75% vs. placebo; p = 0.501). The statistical power to accept our observation was 81.5%. Compared with placebo, estrogen did not significantly change E-selectin, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, monocyte chemoattractant protein-1 or matrix metalloproteinase-9 levels. Compared with placebo, estrogen tended to decrease tissue factor antigen and increase tissue factor activity levels by 7 ± 46% and 5 ± 34%, respectively (p = 0.321 and p = 0.117, respectively) and lower plasminogen activator inhibitor-1 levels by 16 ± 31% (p = 0.043).CONCLUSIONSThe effects of estrogen on endothelial, vascular dilatory and other homeostatic functions were less apparent in type II diabetic postmenopausal women, despite the beneficial effects of estrogen on lipoprotein levels

    Acute respiratory alkalosis occurring after endoscopic third ventriculostomy -A case report-

    Get PDF
    An endoscopic third ventriculostomy was performed in a 55-year-old man with an obstructive hydrocephalus due to aqueductal stenosis. The vital signs and laboratory studies upon admission were within the normal limits. Anesthesia was maintained with nitrous oxide in oxygen and 6% desflurane. The patient received irrigation with approximately 3,000 ml normal saline during the procedure. Anesthesia and operation were uneventful. However, he developed postoperative hyperventilation in the recovery room, and arterial blood gas analysis revealed acute respiratory alkalosis. We report a rare respiratory alkalosis that occurred after an endoscopic third ventriculostomy
    corecore