1,100 research outputs found

    Quantifying discrepancies in opinion spectra from online and offline networks

    Full text link
    Online social media such as Twitter are widely used for mining public opinions and sentiments on various issues and topics. The sheer volume of the data generated and the eager adoption by the online-savvy public are helping to raise the profile of online media as a convenient source of news and public opinions on social and political issues as well. Due to the uncontrollable biases in the population who heavily use the media, however, it is often difficult to measure how accurately the online sphere reflects the offline world at large, undermining the usefulness of online media. One way of identifying and overcoming the online-offline discrepancies is to apply a common analytical and modeling framework to comparable data sets from online and offline sources and cross-analyzing the patterns found therein. In this paper we study the political spectra constructed from Twitter and from legislators' voting records as an example to demonstrate the potential limits of online media as the source for accurate public opinion mining.Comment: 10 pages, 4 figure

    CSGM Designer: a platform for designing cross-species intron-spanning genic markers linked with genome information of legumes.

    Get PDF
    BackgroundGenetic markers are tools that can facilitate molecular breeding, even in species lacking genomic resources. An important class of genetic markers is those based on orthologous genes, because they can guide hypotheses about conserved gene function, a situation that is well documented for a number of agronomic traits. For under-studied species a key bottleneck in gene-based marker development is the need to develop molecular tools (e.g., oligonucleotide primers) that reliably access genes with orthology to the genomes of well-characterized reference species.ResultsHere we report an efficient platform for the design of cross-species gene-derived markers in legumes. The automated platform, named CSGM Designer (URL: http://tgil.donga.ac.kr/CSGMdesigner), facilitates rapid and systematic design of cross-species genic markers. The underlying database is composed of genome data from five legume species whose genomes are substantially characterized. Use of CSGM is enhanced by graphical displays of query results, which we describe as "circular viewer" and "search-within-results" functions. CSGM provides a virtual PCR representation (eHT-PCR) that predicts the specificity of each primer pair simultaneously in multiple genomes. CSGM Designer output was experimentally validated for the amplification of orthologous genes using 16 genotypes representing 12 crop and model legume species, distributed among the galegoid and phaseoloid clades. Successful cross-species amplification was obtained for 85.3% of PCR primer combinations.ConclusionCSGM Designer spans the divide between well-characterized crop and model legume species and their less well-characterized relatives. The outcome is PCR primers that target highly conserved genes for polymorphism discovery, enabling functional inferences and ultimately facilitating trait-associated molecular breeding

    The Safety and Efficacy of Transconjunctival Sutureless 23-gauge Vitrectomy

    Get PDF
    PURPOSE: To evaluate the efficacy and safety of vitreoretinal surgery using a 23-gauge transconjunctival sutureless vitrectomy (TSV) system for various vitreoretinal diseases. METHODS: A retrospective, consecutive, interventional case series was performed for 40 eyes of 40 patients. The patients underwent vitreoretinal procedures using the 23-gauge TSV system, including idiopathic epiretinal membrane (n=7), vitreous hemorrhage (n=11), diabetic macular edema (n=10), macular hole (n=5), vitreomacular traction syndrome (n=5), diabetic tractional retinal detachment (n=1), and rhegmatogenous retinal detachment (n=1). Best corrected visual acuity (BCVA), intraocular pressure (IOP), and intra- and post-operative complications were evaluated. RESULTS: Intraoperative suture placement was necessary in 3 eyes (7.5%). The median BCVA improved from 20/400 (LogMAR, 1.21+/-0.63) to 20/140 (LogMAR, 0.83+/-0.48) at 1 week (p=0.003), 20/100 (LogMAR, 0.85+/-0.65) at 1 month (p=0.002), 20/100 (LogMAR, 0.73+/-0.6) at 3 months (p=0.001). In 1 eye, IOP was 5 mmHg at 2 hours and 4 mmHg at 5 hours, but none of the eyes showed hypotony after 1 postoperative day. No serous postoperative complications were observed during a mean follow-up of 8.4+/-3.4 months (range 3-13 months) CONCLUSIONS: The 23-gauge TSV system shows promise as an effective and safe technique for a variety of vitreoretinal procedures. It appears to be a less traumatic, more convenient alternative to 20-gauge vitrectomy in some indications

    Functional enhancement of neuronal cell behaviors and differentiation by elastin-mimetic recombinant protein presenting Arg-Gly-Asp peptides

    Get PDF
    Background: Integrin-mediated interaction of neuronal cells with extracellular matrix (ECM) is important for the control of cell adhesion, morphology, motility, and differentiation in both in vitro and in vivo systems. Arg-Gly-Asp (RGD) sequence is one of the most potent integrin-binding ligand found in many native ECM proteins. An elastin-mimetic recombinant protein, TGPG[VGRGD(VGVPG)6]20WPC, referred to as [RGD-V6]20, contains multiple RGD motifs to bind cell-surface integrins. This study aimed to investigate how surface-adsorbed recombinant protein can be used to modulate the behaviors and differentiation of neuronal cells in vitro. For this purpose, biomimetic ECM surfaces were prepared by isothermal adsorption of [RGD-V6]20 onto the tissue culture polystyrene (TCPS), and the effects of protein-coated surfaces on neuronal cell adhesion, spreading, migration, and differentiation were quantitatively measured using N2a neuroblastoma cells.Results: The [RGD-V6]20 was expressed in E. coli and purified by thermally-induced phase transition. N2a cell attachment to either [RGD-V6]20 or fibronectin followed hyperbolic binding kinetics saturating around 2 μM protein concentration. The apparent maximum cell binding to [RGD-V6]20 was approximately 96% of fibronectin, with half-maximal adhesion on [RGD-V6]20 and fibronectin occurring at a coating concentration of 2.4 × 10-7 and 1.4 × 10-7 M, respectively. The percentage of spreading cells was in the following order of proteins: fibronectin (84.3% ± 6.9%) > [RGD-V6]20 (42.9% ± 6.5%) > [V7]20 (15.5% ± 3.2%) > TCPS (less than 10%). The migration speed of N2a cells on [RGD-V6]20 was similar to that of cells on fibronectin. The expression of neuronal marker proteins Tuj1, MAP2, and GFAP was approximately 1.5-fold up-regulated by [RGD-V6]20 relative to TCPS. Moreover, by the presence of both [RGD-V6]20 and RA, the expression levels of NSE, TuJ1, NF68, MAP2, and GFAP were significantly elevated.Conclusion: We have shown that an elastin-mimetic protein consisting of alternating tropoelastin structural domains and cell-binding RGD motifs is able to stimulate neuronal cell behaviors and differentiation. In particular, adhesion-induced neural differentiation is highly desirable for neural development and nerve repair. In this context, our data emphasize that the combination of biomimetically engineered recombinant protein and isothermal adsorption approach allows for the facile preparation of bioactive matrix or coating for neural tissue regeneration. © 2012 Jeon et al.; licensee BioMed Central Ltd.1

    Jamming transition in a highly dense granular system under vertical vibration

    Full text link
    The dynamics of the jamming transition in a three-dimensional granular system under vertical vibration is studied using diffusing-wave spectroscopy. When the maximum acceleration of the external vibration is large, the granular system behaves like a fluid, with the dynamic correlation function G(t) relaxing rapidly. As the acceleration of vibration approaches the gravitational acceleration g, the relaxation of G(t) slows down dramatically, and eventually stops. Thus the system undergoes a phase transition and behaves like a solid. Near the transition point, we find that the structural relaxation shows a stretched exponential behavior. This behavior is analogous to the behavior of supercooled liquids close to the glass transition.Comment: 5 pages, 5 figures, accepted by Phys. Rev.

    Homocysteine-induced peripheral microcirculation dysfunction in zebrafish and its attenuation by L-arginine

    Get PDF
    Elevated blood homocysteine (Hcy) level is frequently observed in aged individuals and those with age-related vascular diseases. However, its effect on peripheral microcirculation is still not fully understood. Using in vivo zebrafish model, the degree of Hcy-induced peripheral microcirculation dysfunction is assessed in this study with a proposed dimensionless velocity parameter (V) over bar (CV)/(V) over bar (PCV), where (V) over bar (CV) and (V) over bar (PCV) represent the peripheral microcirculation perfusion and the systemic perfusion levels, respectively. The ratio of the peripheral microcirculation perfusion to the systemic perfusion is largely decreased due to peripheral accumulation of neutrophils, while the systemic perfusion is relatively preserved by increased blood supply from subintestinal vein. Pretreatment with L-arginine attenuates the effects of Hcy on peripheral microcirculation and reduces the peripheral accumulation of neutrophils. Given its convenience, high reproducibility of the observation site, non-invasiveness, and the ease of drug treatment, the present zebrafish model with the proposed parameters will be used as a useful drug screening platform for investigating the pathophysiology of Hcy-induced microvascular diseases.111Ysciescopu

    Manipulation of Charge Delocalization in a Bulk Heterojunction Material Using a Mid-Infrared Push Pulse

    Full text link
    In organic bulk heterojunction materials, charge delocalization has been proposed to play a vital role in the generation of free carriers by reducing the Coulomb attraction via an interfacial charge transfer exciton (CTX). Pump-push-probe (PPP) experiments produced evidence that the excess energy given by a push pulse enhances delocalization, thereby increasing photocurrent. However, previous studies have employed near-IR push pulses in the range 0.4-0.6 eV which is larger than the binding energy of a typical CTX. This raises the doubt that the push pulse may directly promote dissociation without involving delocalized states. Here, we perform PPP experiments with mid-IR push pulses at energies that are well below the binding energy of a CTX state (0.12-0.25 eV). We identify three types of CTX: delocalized, localized, and trapped. The excitation resides over multiple polymer chains in delocalized CTXs, while is restricted to a single chain (albeit maintaining a degree of intrachain delocalization) in localized CTXs. Trapped CTXs are instead completely localized. The pump pulse generates a hot delocalized CTX, which relaxes to a localized CTX, and eventually to trapped states. We find that photo-exciting localized CTXs with push pulses resonant to the mid-IR charge transfer absorption can promote delocalization and contribute to the formation of long-lived charge separated states. On the other hand, we found that trapped CTX are non-responsive to the push pulses. We hypothesize that delocalized states identified in prior studies are only accessible in systems where there is significant interchain electronic coupling or regioregularity that supports either interchain or intrachain polaron delocalization. This emphasizes the importance of engineering the micromorphology and energetics of the donor-acceptor interface to exploit a full potential of a material for photovoltaic applications
    corecore