52 research outputs found

    Highly mobile carriers in orthorhombic phases of iron-based superconductors FeSe1x{}_{1-x}Sx{}_{x}

    Full text link
    The field and temperature dependencies of the longitudinal and Hall resistivity have been measured for FeSe1x{}_{1-x}Sx{}_{x} (x=0.04, 0.09 and 0.19) single crystals. The sample FeSe0.81{}_{0.81}S0.19{}_{0.19} does not show a transition to an orthorhombic phase and exhibits at low temperatures the transport properties quite different from those of orthorhombic samples. The behavior of FeSe0.81{}_{0.81}S0.19{}_{0.19} is well described by the simple two band model with comparable values of hole and electron mobility. In particular, at low temperatures the transverse resistance shows a linear field dependence, the magnetoresistance follow a quadratic field dependence and obeys to Kohler's rule. In contrast, Kohler's rule is strongly violated for samples having an orthorhombic low temperature structure. However, the transport properties of the orthorhombic samples can be satisfactory described by the three band model with the pair of almost equivalent to the tetragonal sample hole and electron bands, supplemented with the highly mobile electron band which has two order smaller carrier number. Therefore, the peculiarity of the low temperature transport properties of the orthorhombic Fe(SeS) samples, as probably of many other orthorhombic iron superconductors, is due to the presence of a small number of highly mobile carriers which originate from the local regions of the Fermi surface, presumably, nearby the Van Hove singularity points

    Superconductivity, Electron Paramagnetic Resonance, and Raman Scattering Studies of Heterofullerides with Cs and Mg

    Get PDF
    In the present study, the results of investigation of physical properties of heterofullerides A3−xMxC60 (A=K, Rb, Cs, M=Be, Mg, Ca, Al, Fe, Tl, x=1,2); as well as RbCsTlC60, KCsTlC60, and KMg2C60 are described. All of the fullerides were synthesized by the exchange reactions of alkaline fullerides with anhydrous metal halides. Superconductivity was found in RbCsTlC60 and KCsTlC60

    Sn delta-doping in GaAs

    Full text link
    We have prepared a number of GaAs structures delta-doped by Sn using the well-known molecular beam epitaxy growth technique. The samples obtained for a wide range of Sn doping densities were characterised by magnetotransport experiments at low temperatures and in high magnetic fields up to 38 T. Hall-effect and Shubnikov-de Haas measurements show that the electron densities reached are higher than for other delta-dopants, like Si and Be. The maximum carrier density determined by the Hall effect equals 8.4x10^13 cm^-2. For all samples several Shubnikov-de Haas frequencies were observed, indicating the population of multiple subbands. The depopulation fields of the subbands were determined by measuring the magnetoresistance with the magnetic field in the plane of the delta-layer. The experimental results are in good agreement with selfconsistent bandstructure calculations. These calculation shows that in the sample with the highest electron density also the conduction band at the L point is populated.Comment: 11 pages text (ps), 9 figures (ps), submitted to Semicon. Science Tech
    corecore