4 research outputs found

    A guide to the optogenetic regulation of endogenous molecules

    Get PDF
    Genetically encoded tools for the regulation of endogenous molecules (RNA, DNA elements and protein) are needed to study and control biological processes with minimal interference caused by protein overexpression and overactivation of signaling pathways. Here we focus on light-controlled optogenetic tools (OTs) that allow spatiotemporally precise regulation of gene expression and protein function. To control endogenous molecules, OTs combine light-sensing modules from natural photoreceptors with specific protein or nucleic acid binders. We discuss OT designs and group OTs according to the principles of their regulation. We outline characteristics of OT performance, discuss considerations for their use in vivo and review available OTs and their applications in cells and in vivo. Finally, we provide a brief outlook on the development of OTs. This Review discusses optogenetic tools for manipulating endogenous targets such as genes and signaling pathways in a physiological range.Peer reviewe

    Structural and Functional Characterization of a Biliverdin-Binding Near-Infrared Fluorescent Protein From the Serpin Superfamily

    Get PDF
    Biliverdin-binding serpins (BBSs) are proteins that are responsible for coloration in amphibians and fluoresce in the near-infrared (NIR) spectral region. Here we produced the first functional recombinant BBS of the polka-dot treefrog Boana punctata (BpBBS), assembled with its biliverdin (BV) chromophore, and report its biochemical and photochemical characterization. We determined the crystal structure of BpBBS at 2.05 angstrom resolution, which demonstrated its structural homology to the mammalian protease inhibitor alpha-1-antitrypsin. BV interaction with BpBBS was studied and it was found that the N-terminal polypeptide (residues 19-50) plays a critical role in the BV binding. By comparing BpBBS with the available NIR fluorescent proteins and expressing it in mammalian cells, we demonstrated its potential as a NIR imaging probe. These results provide insight into the non-inhibitory function of serpins, provide a basis for improving their performance in mammalian cells, and suggest possible paths for the development of BBS-based fluorescent probes. (C) 2021 Elsevier Ltd. All rights reserved.Peer reviewe

    Photodegradable by Yellow-Orange Light degFusionRed Optogenetic Module with Autocatalytically Formed Chromophore

    Get PDF
    Optogenetic systems driven by yellow-orange light are required for the simultaneous regulation of several cellular processes. We have engineered the red fluorescent protein FusionRed into a 26 kDa monomeric optogenetic module, called degFusionRed. Unlike other fluorescent protein-based optogenetic domains, which exhibit light-induced self-inactivation by generating reactive oxygen species, degFusionRed undergoes proteasomal degradation upon illumination with 567 nm light. Similarly to the parent protein, degFusionRed has minimal absorbance at 450 nm and above 650 nm, making it spectrally compatible with blue and near-infrared-light-controlled optogenetic tools. The autocatalytically formed chromophore provides degFusionRed with an additional advantage over most optogenetic tools that require the binding of the exogenous chromophores, the amount of which varies in different cells. The degFusionRed efficiently performed in the engineered light-controlled transcription factor and in the targeted photodegradation of the protein of interest, demonstrating its versatility as the optogenetic module of choice for spectral multiplexed interrogation of various cellular processes

    Photodegradable by Yellow-Orange Light degFusionRed Optogenetic Module with Autocatalytically Formed Chromophore

    No full text
    Optogenetic systems driven by yellow-orange light are required for the simultaneous regulation of several cellular processes. We have engineered the red fluorescent protein FusionRed into a 26 kDa monomeric optogenetic module, called degFusionRed. Unlike other fluorescent protein-based optogenetic domains, which exhibit light-induced self-inactivation by generating reactive oxygen species, degFusionRed undergoes proteasomal degradation upon illumination with 567 nm light. Similarly to the parent protein, degFusionRed has minimal absorbance at 450 nm and above 650 nm, making it spectrally compatible with blue and near-infrared-light-controlled optogenetic tools. The autocatalytically formed chromophore provides degFusionRed with an additional advantage over most optogenetic tools that require the binding of the exogenous chromophores, the amount of which varies in different cells. The degFusionRed efficiently performed in the engineered light-controlled transcription factor and in the targeted photodegradation of the protein of interest, demonstrating its versatility as the optogenetic module of choice for spectral multiplexed interrogation of various cellular processes
    corecore