4 research outputs found
Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes
Background: Phosphorylation is the most frequent post-translational modification made to proteins and may regulate protein activity as either a molecular digital switch or a rheostat. Despite the cornucopia of high-throughput (HTP) phosphoproteomic data in the last decade, it remains unclear how many proteins are phosphorylated and how many phosphorylation sites (p-sites) can exist in total within a eukaryotic proteome. We present the first reliable estimates of the total number of phosphoproteins and p-sites for four eukaryotes (human, mouse, Arabidopsis, and yeast).
Results: In all, 187 HTP phosphoproteomic datasets were filtered, compiled, and studied along with two low-throughput (LTP) compendia. Estimates of the number of phosphoproteins and p-sites were inferred by two methods: Capture-Recapture, and fitting the saturation curve of cumulative redundant vs. cumulative non-redundant phosphoproteins/p-sites. Estimates were also adjusted for different levels of noise within the individual datasets and other confounding factors. We estimate that in total, 13 000, 11 000, and 3000 phosphoproteins and 230 000, 156 000, and 40 000 p-sites exist in human, mouse, and yeast, respectively, whereas estimates for Arabidopsis were not as reliable.
Conclusions: Most of the phosphoproteins have been discovered for human, mouse, and yeast, while the dataset for Arabidopsis is still far from complete. The datasets for p-sites are not as close to saturation as those for phosphoproteins. Integration of the LTP data suggests that current HTP phosphoproteomics appears to be capable of capturing 70% to 95% of total phosphoproteins, but only 40% to 60% of total p-sites
Single-Cell Signalling Analysis of Heterocellular Organoids
Organoids are powerful biomimetic tissue models. Despite their widespread adoption, methods to analyse cell-type specific post-translational modification (PTM) signalling networks in organoids are absent. Here we report multivariate single-cell analysis of cell-type specific signalling networks in organoids and organoid co-cultures. Simultaneous measurement of 28 PTMs in >1 million single small intestinal organoid cells by mass cytometry reveals cell-type and cell-state specific signalling networks in stem, Paneth, enteroendocrine, tuft, goblet cells, and enterocytes. Integrating single-cell PTM analysis with Thiol-reactive Organoid Barcoding in situ (TOBis) enables high-throughput comparison of signalling networks between organoid cultures. Multivariate cell-type specific PTM analysis of colorectal cancer tumour microenvironment organoids reveals that shApc, KrasG12D, and Trp53R172H cell-autonomously mimic signalling states normally induced by stromal fibroblasts and macrophages. These results demonstrate how standard mass cytometry workflows can be modified to perform high-throughput multivariate cell-type specific signalling analysis of healthy and cancerous organoids
Enamel proteins reveal biological sex and genetic variability within southern African Paranthropus
The evolutionary relationships among extinct African hominin taxa are highly debated and largely unresolved, due in part to a lack of molecular data. Even within taxa, it is not always clear, based on morphology alone, whether ranges of variation are due to sexual dimorphism versus potentially undescribed taxonomic diversity. For Paranthropus robustus , a Pleistocene hominin found only in South Africa, both phylogenetic relationships to other taxa 1,2 and the nature of intraspecific variation 3–6 are still disputed. Here we report the mass spectrometric (MS) sequencing of enamel proteomes from four ca. 2 million year (Ma) old dental specimens attributed morphologically to P. robustus, from the site of Swartkrans. The identification of AMELY-specific peptides and semi-quantitative MS data analysis enabled us to determine the biological sex of all the specimens. Our combined molecular and morphometric data also provide compelling evidence of a significant degree of variation within southern African Paranthropus , as previously suggested based on morphology alone 6 . Finally, the molecular data also confirm the taxonomic placement of Paranthropus within the hominin clade. This study demonstrates the feasibility of recovering informative Early Pleistocene hominin enamel proteins from Africa. Crucially, it also shows how the analysis of these proteins can contribute to understanding whether hominin morphological variation is due to sexual dimorphism or to taxonomic differences. We anticipate that this approach can be widely applied to geologically-comparable sites within South Africa, and possibly more broadly across the continent