64 research outputs found

    Selective interactions of boundaries with upstream region of Abd-B promoter in Drosophila bithorax complex and role of dCTCF in this process

    Get PDF
    Expression of the genes Ubx, abd-A, and Abd-B of the bithorax complex depends on its cis-regulatory region, which is divided into discrete functional domains (iab). Boundary/insulator elements, named Mcp, Fab-6, Fab-7 and Fab-8 (PTS/F8), have been identified at the borders of the iab domains. Recently, binding sites for a Drosophila homolog of the vertebrate insulator protein CTCF have been identified in Mcp, Fab-6 and Fab-8 and also in several regions that correspond to predicted boundaries, Fab-3 and Fab-4 in particular. Taking into account the inability of the yeast GAL4 activator to stimulate the white promoter when the activator and the promoter are separated by a 5-kb yellow gene, we have tested functional interactions between the boundaries. The results show that all dCTCF-containing boundaries interact with each other. However, inactivation of dCTCF binding sites in Mcp, Fab-6 and PTS/F8 only partially reduces their ability to interact, suggesting the presence of additional protein(s) supporting distant interactions between the boundaries. Interestingly, only Fab-6, Fab-7 (which contains no dCTCF binding sites) and PTS/F8 interact with the upstream region of the Abd-B promoter. Thus, the boundaries might be involved in supporting the specific interactions between iab enhancers and promoters of the bithorax complex

    The cultural and creative function of moving image literacy in the subject of English in the Greek secondary school

    Get PDF
    Teaching media literacy as a separate school subject or as part of another school subject is lacking from the Greek educational reality, despite the international academic research and the development and application of media literacy teaching models. This thesis is an analysis of two case study research projects carried out in groups of students in two Greek secondary schools with the aim to study the studentsā€™ response to media projects, which are totally new for the Greek educational reality, realized in the English as a Foreign Language class. The data is analyzed according to Burn and Durranā€™s 3-Cs model of media literacy, and more precisely its Cultural and Creative functions are the aspects used that include the concepts of Cultural Taste, Identity, and Creativity. These concepts are interpreted within the framework of Cultural Studies and Psychology theories. Important theoreticians considered are Bourdieu, Bennett, Giddens, Vygotsky, Jenkins and Bakhtin. The examination of studentsā€™ participation in the media projects and their production work suggest that their cultural taste is a combination of global and local influences, a glocal result, in which the family, the peers, the media and the education play an important role. Their identity is multi-faceted, as a reflection of various aspects of their selves, and it is closely related to their cultural taste and their cultural capital. Studentsā€™ creativity is also expressed as a complex process, affected both by the guidance of the official educational context and the youth popular culture tendencies. The tensions that emerge in the expression of the studentsā€™ cultural taste, identity and creativity during moving image projects characterize the Greek adolescentsā€™ response to the newly-learnt moving image literacy, and raise important questions for educators and researchers

    Mechanisms of Enhancer-Promoter Interactions in Higher Eukaryotes

    No full text
    In higher eukaryotes, enhancers determine the activation of developmental gene transcription in specific cell types and stages of embryogenesis. Enhancers transform the signals produced by various transcription factors within a given cell, activating the transcription of the targeted genes. Often, developmental genes can be associated with dozens of enhancers, some of which are located at large distances from the promoters that they regulate. Currently, the mechanisms underlying specific distance interactions between enhancers and promoters remain poorly understood. This review briefly describes the properties of enhancers and discusses the mechanisms of distance interactions and potential proteins involved in this process

    Mechanisms of Interaction between Enhancers and Promoters in Three <i>Drosophila</i> Model Systems

    No full text
    In higher eukaryotes, the regulation of developmental gene expression is determined by enhancers, which are often located at a large distance from the promoters they regulate. Therefore, the architecture of chromosomes and the mechanisms that determine the functional interaction between enhancers and promoters are of decisive importance in the development of organisms. Mammals and the model animal Drosophila have homologous key architectural proteins and similar mechanisms in the organization of chromosome architecture. This review describes the current progress in understanding the mechanisms of the formation and regulation of long-range interactions between enhancers and promoters at three well-studied key regulatory loci in Drosophila.</i

    Mechanisms of Interaction between Enhancers and Promoters in Three Drosophila Model Systems

    No full text
    In higher eukaryotes, the regulation of developmental gene expression is determined by enhancers, which are often located at a large distance from the promoters they regulate. Therefore, the architecture of chromosomes and the mechanisms that determine the functional interaction between enhancers and promoters are of decisive importance in the development of organisms. Mammals and the model animal Drosophila have homologous key architectural proteins and similar mechanisms in the organization of chromosome architecture. This review describes the current progress in understanding the mechanisms of the formation and regulation of long-range interactions between enhancers and promoters at three well-studied key regulatory loci in Drosophila

    Boundary bypass activity in the abdominal-B region of the Drosophila bithorax complex is position dependent and regulated

    No full text
    Expression of Abdominal-B (Abd-B) in abdominal segments A5ā€“A8 is controlled by four regulatory domains, iab-5ā€“iab-8. Each domain has an initiator element (which sets the activity state), elements that maintain this state and tissue-specific enhancers. To ensure their functional autonomy, each domain is bracketed by boundary elements (Mcp, Fab-7, Fab-7 and Fab-8). In addition to blocking crosstalk between adjacent regulatory domains, the Fab boundaries must also have bypass activity so the relevant regulatory domains can ā€˜jump overā€™ intervening boundaries and activate the Abd-B promoter. In the studies reported here we have investigated the parameters governing bypass activity. We find that the bypass elements in the Fab-7 and Fab-8 boundaries must be located in the regulatory domain that is responsible for driving Abd-B expression. We suggest that bypass activity may also be subject to regulation
    • ā€¦
    corecore