945 research outputs found

    Prevalence and clinical impact of vitamin D deficiency in critically ill Korean patients with traumatic injuries: a single-center, prospective, observational study

    Get PDF
    Background This study investigated the prevalence and impact of 25-hydroxyvitamin D (25(OH) vitamin D) deficiency in critically ill Korean patients with traumatic injuries. Methods This prospective observational cohort study assessed the 25(OH) vitamin D status of consecutive trauma patients admitted to the trauma intensive care unit (TICU) of Kyungpook National University Hospital between January and December 2018. We analyzed the prevalence of 25(OH) vitamin D deficiency and its impact on clinical outcomes. Results There were no significant differences in the duration of mechanical ventilation (MV), lengths of TICU and hospital stays, and rates of nosocomial infection and mortality between patients with 25(OH) vitamin D <20 ng/ml and those with 25(OH) vitamin D ≥20 ng/ml within 24 hours of TICU admission. The duration of MV and lengths of TICU and hospital stays were shorter and the rate of nosocomial infection was lower in patients with 25(OH) vitamin D level ≥20 ng/ml on day 7 of hospitalization. The duration of MV, lengths of TICU and hospital stays, and nosocomial infection rate were significantly lower in patients with increased concentrations compared with those with decreased concentrations on day 7 of hospitalization, but the mortality rate did not differ significantly. Conclusions The 25(OH) vitamin D level measured within 24 hours after TICU admission was unrelated to clinical outcomes in critically ill patients with traumatic injuries. However, patients with increased 25(OH) vitamin D level after 7 days of hospitalization had better clinical outcomes than those with decreased levels

    Paper on a disc: balancing the capillary-driven flow with a centrifugal force

    Get PDF
    This paper describes the active control of the capillary-driven flow in paper using a centrifugal device.close191

    Prediction of ferroelectricity-driven Berry curvature enabling charge- and spin-controllable photocurrent in tin telluride monolayers

    Get PDF
    In symmetry-broken crystalline solids, pole structures of Berry curvature (BC) can emerge, and they have been utilized as a versatile tool for controlling transport properties. For example, the monopole component of the BC is induced by the time-reversal symmetry breaking, and the BC dipole arises from a lack of inversion symmetry, leading to the anomalous Hall and nonlinear Hall effects, respectively. Based on first-principles calculations, we show that the ferroelectricity in a tin telluride monolayer produces a unique BC distribution, which offers charge- and spin-controllable photocurrents. Even with the sizable band gap, the ferroelectrically driven BC dipole is comparable to those of small-gap topological materials. By manipulating the photon handedness and the ferroelectric polarization, charge and spin circular photogalvanic currents are generated in a controllable manner. The ferroelectricity in group-IV monochalcogenide monolayers can be a useful tool to control the BC dipole and the nonlinear optoelectronic responses
    corecore