396 research outputs found

    Cognitive and behavioral effects of lamotrigine and carbamazepine monotherapy in patients with newly diagnosed or untreated partial epilepsy

    Get PDF
    AbstractPurposeIn this prospective study, we compared the long-term cognitive and behavioral effects of lamotrigine (LTG) and carbamazepine (CBZ) in patients with newly diagnosed or untreated partial epilepsy.MethodsThis was a multicenter, open-label, randomized study that compared monotherapy with LTG and CBZ in newly diagnosed or untreated patients with partial epilepsy. We employed an 8-week titration period and a 40-week maintenance period. Neuropsychological tests, Symptom Check List-90, and QOLIE-31 were assessed at baseline, 16 weeks, and 48 weeks after drug treatment. A group-by-time interaction was the primary outcome measure and was analyzed by use of the linear mixed model.ResultsA total of 110 patients were eligible and 73 completed the 48-week study (LTG, n=39; CBZ, n=34). Among the cognitive tests, significant group-by-time interaction was identified only in phonemic fluency of Controlled Oral Word Association Task (p=0.0032) and Stroop Color–Word Interference (p=0.0283), with a significant better performance for LTG group. All other neuropsychological tests included did not show significant group-by-time interactions. Among the subscales of Symptom Check List-90, significant group-by-time interactions were identified in Obsessive-Compulsive (p=0.0005), Paranoid Ideation (p=0.0454), Global Severity Index (p=0.0194), and Positive Symptom Total (p=0.0197), with a significant improvement for CBZ group. QOLIE-31 did not show significant group-by-time interactions.ConclusionOur data suggest that epilepsy patients on LTG have better performance on phonemic fluency and the task of Stroop Color–Word Interference than do patients on CBZ, whereas patients on CBZ had more favorable behavioral effects on two subscales and two global scores of Symptom Check List-90 than did patients on LTG

    Effect of biochars pyrolyzed in N2 and CO2, and feedstock on microbial community in metal(loid)s contaminated soils

    Get PDF
    Little is known about the effects of applying amendments on soil for immobilizing metal(loid)s on the soil microbial community. Alterations in the microbial community were examined after incubation of treated contaminated soils. One soil was contaminated with Pb and As, a second soil with Cd and Zn. Red pepper stalk (RPS) and biochars produced from RPS in either N2 atmosphere (RPSN) or CO2 atmosphere (RPSC) were applied at a rate of 2.5% to the two soils and incubated for 30 days. Bacterial communities of control and treated soils were characterized by sequencing 16S rRNA genes using the Illumina MiSeq sequencing. In both soils, bacterial richness increased in the amended soils, though somewhat differently between the treatments. Evenness values decreased significantly, and the final overall diversities were reduced. The neutralization of pH, reduced available concentrations of Pb or Cd, and supplementation of available carbon and surface area could be possible factors affecting the community changes. Biochar amendments caused the soil bacterial communities to become more similar than those in the not amended soils. The bacterial community structures at the phylum and genus levels showed that amendment addition might restore the normal bacterial community of soils, and cause soil bacterial communities in contaminated soils to normalize and stabilize

    Flavonol glycosides from the aerial parts of Aceriphyllum rossii and their antioxidant activities

    Get PDF
    The methanol extract obtained from the aerial parts ofAceriphyllum rossii (Saxifragaceae) was fractionated into ethyl acetate (EtOAc),n-BuOH and H2O layers through solvent fractionation. Repeated silica gel column chromatography of EtOAc andn-BuOH layers afforded six flavonol glycosides. They were identified as kaempferol 3-O-β-D-glucopyranoside (astragalin,1), quercetin 3-O-β-D-glucopyranoside (isoquercitrin,2), kaempferol 3-O-α-L-rhamnopyranosyl (1→6)-β-D-glucopyranoside (3), quercetin 3-O-α-L-rhamnopyranosyl (1→6)-β-D-glucopyrano-side (rutin,4), kaempferol 3-O-[α-L-rhamnopyranosyl (1→4)-α-L-rhamnopyranosyl (1→6)-β-D-glucopyranoside] (5) and quercetin 3-O-[α-L-rhamnopyranosyl (1→4)-α-L-rhamnopyranosyl (1→6)-β-D-glucopyranoside] (6) on the basis of several spectral data. The antioxidant activity of the six compounds was investigated using two free radicals such as the ABTS free radical and superoxide anion radical. Compound1 exhibited the highest antioxidant activity in the ABTS2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging method. 100 mg/L of compound1 was equivalent to 72.1±1.4 mg/L of vitamin C, and those of compounds3 and5 were equivalent to 62.7±0.5 mg/L and 54.3±1.3 mg/L of vitamin C, respectively. And in the superoxide anion radical scavenging method, compound5 exhibited the highest activity with an IC50 value of 17.6 ± 0.3 μM. In addition, some physical and spectral data of the flavonoids were confirme

    Collagen Immobilization on Ultra-thin Nanofiber Membrane to Promote In Vitro Endothelial Monolayer Formation

    Get PDF
    The endothelialization on the poly (epsilon-caprolactone) nanofiber has been limited due to its low hydrophilicity. The aim of this study was to immobilize collagen on an ultra-thin poly (epsilon-caprolactone) nanofiber membrane without altering the nanofiber structure and maintaining the endothelial cell homeostasis on it. We immobilized collagen on the poly (epsilon-caprolactone) nanofiber using hydrolysis by NaOH treatment and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/sulfo-N-hydroxysulfosuccinimide reaction as a cost-effective and stable approach. NaOH was first applied to render the poly (epsilon-caprolactone) nanofiber hydrophilic. Subsequently, collagen was immobilized on the surface of the poly (epsilon-caprolactone) nanofibers using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/sulfo-N-hydroxysulfosuccinimide. Scanning electron microscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and fluorescence microscopy were used to verify stable collagen immobilization on the surface of the poly (epsilon-caprolactone) nanofibers and the maintenance of the original structure of poly (epsilon-caprolactone) nanofibers. Furthermore, human endothelial cells were cultured on the collagen-immobilized poly (epsilon-caprolactone) nanofiber membrane and expressed tight junction proteins with the increase in transendothelial electrical resistance, which demonstrated the maintenance of the endothelial cell homeostasis on the collagen-immobilized-poly (epsilon-caprolactone) nanofiber membrane. Thus, we expected that this process would be promising for maintaining cell homeostasis on the ultra-thin poly (epsilon-caprolactone) nanofiber scaffolds.11Ysciescopu

    In Vitro and in Vivo Anti-Hyperglycemic Effects of Omija (Schizandra chinensis) Fruit

    Get PDF
    The entrocytes of the small intestine can only absorb monosaccharides such as glucose and fructose from our diet. The intestinal absorption of dietary carbohydrates such as maltose and sucrose is carried out by a group of α-glucosidases. Inhibition of these enzymes can significantly decrease the postprandial increase of blood glucose level after a mixed carbohydrate diet. Therefore, the inhibitory activity of Omija (Schizandra chinensis) extract against rat intestinal α-glucosidase and porcine pancreatic α-amylase were investigated in vitro and in vivo. The in vitro inhibitory activities of water extract of Omija pulp/skin (OPE) on α-glucosidase and α-amylase were potent when compared to Omija seeds extract (OSE). The postprandial blood glucose lowering effect of Omija extracts was compared to a known type 2 diabetes drug (Acarbose), a strong α-glucosidase inhibitor in the Sprague-Dawley (SD) rat model. In rats fed on sucrose, OPE significantly reduced the blood glucose increase after sucrose loading. Furthermore, the oxygen radical absorbance capacity (ORAC) of OSE and OPE was evaluated. OPE had higher peroxyl radical absorbing activity than OSE. These results suggest that Omija, which has high ORAC value with α-glucosidase inhibitory activity and blood glucose lowering effect, could be physiologically useful for treatment of diabetes, although clinical trials are needed

    Therapeutic genome editing for Charcot-marie-tooth disease type 1a

    Get PDF
    Charcot-Marie-Tooth 1A (CMT1A) is the most common inherited neuropathy without a known therapy, which is caused by a 1.4 Mb duplication on human chromosome 17, which includes the gene encoding the peripheral myelin protein of 22 kDa (PMP22). Overexpressed PMP22 protein from its gene duplication is thought to cause demyelination and subsequently axonal degeneration in the peripheral nervous system (PNS). Here, we targeted regulatory region of human PMP22 to normalize overexpressed PMP22 level in C22 mice, a mouse model of CMT1A harboring multi copies of human PMP22. Direct local intraneural delivery of CRISPR/Cas9 designed to target TATA-box of PMP22 before the onset of disease, downregulates gene expression of PMP22 and preserves both myelin and axons. Notably, the same approach was effective in partial rescue of demyelination even after the onset of disease. Collectively, our data present a potential therapeutic efficacy of CRISPR/Cas9-mediated targeting of regulatory region of PMP22 to treat CMT1A. Please click Additional Files below to see the full abstract
    corecore