4 research outputs found

    International perspectives on psychosocial working conditions, mental health, and stress of dairy farm operators

    Full text link
    Dairy farm operators-farmers, workers, and family members-are faced with many demands and stressors in their daily work and these appear to be shared across countries and cultures. Dairy operators experience high psychosocial demands with respect to a hard work and production ethos, economic influences, and social and environmental responsibility. Furthermore, both traditional and industrial farms are highly dependent on external conditions, such as weather, fluctuating markets, and regulations from government authorities. Possible external stressors include disease outbreaks, taxes related to dairy production, and recent negative societal attitudes to farming in general. Dairy farm operators may have very few or no opportunities to influence and control these external conditions, demands, and expectations. High work demands and expectations coupled with low control and lack of social support can lead to a poor psychosocial work environment, with increased stress levels, ill mental health, depression, and, in the worst cases, suicide. Internationally, farmers with ill mental health have different health service options depending on their location. Regardless of location, it is initially the responsibility of the individual farmer and farm family to handle mental health and stress, which can be of short- or long-term duration. This paper reviews the literature on the topics of psychosocial working conditions, mental health, stress, depression, and suicide among dairy farm operators, farm workers, and farm family members in an international perspective

    Development and validation of a flax (<it>Linum usitatissimum </it>L.) gene expression oligo microarray

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flax (<it>Linum usitatissimum </it>L.) has been cultivated for around 9,000 years and is therefore one of the oldest cultivated species. Today, flax is still grown for its oil (oil-flax or linseed cultivars) and its cellulose-rich fibres (fibre-flax cultivars) used for high-value linen garments and composite materials. Despite the wide industrial use of flax-derived products, and our actual understanding of the regulation of both wood fibre production and oil biosynthesis more information must be acquired in both domains. Recent advances in genomics are now providing opportunities to improve our fundamental knowledge of these complex processes. In this paper we report the development and validation of a high-density oligo microarray platform dedicated to gene expression analyses in flax.</p> <p>Results</p> <p>Nine different RNA samples obtained from flax inner- and outer-stems, seeds, leaves and roots were used to generate a collection of 1,066,481 ESTs by massive parallel pyrosequencing. Sequences were assembled into 59,626 unigenes and 48,021 sequences were selected for oligo design and high-density microarray (Nimblegen 385K) fabrication with eight, non-overlapping 25-mers oligos per unigene. 18 independent experiments were used to evaluate the hybridization quality, precision, specificity and accuracy and all results confirmed the high technical quality of our microarray platform. Cross-validation of microarray data was carried out using quantitative qRT-PCR. Nine target genes were selected on the basis of microarray results and reflected the whole range of fold change (both up-regulated and down-regulated genes in different samples). A statistically significant positive correlation was obtained comparing expression levels for each target gene across all biological replicates both in qRT-PCR and microarray results. Further experiments illustrated the capacity of our arrays to detect differential gene expression in a variety of flax tissues as well as between two contrasted flax varieties.</p> <p>Conclusion</p> <p>All results suggest that our high-density flax oligo-microarray platform can be used as a very sensitive tool for analyzing gene expression in a large variety of tissues as well as in different cultivars. Moreover, this highly reliable platform can also be used for the quantification of mRNA transcriptional profiling in different flax tissues.</p
    corecore