26 research outputs found
Residual active granzyme B in cathepsin C–null lymphocytes is sufficient for perforin-dependent target cell apoptosis
Cathepsin C activates serine proteases expressed in hematopoietic cells by cleaving an N-terminal dipeptide from the proenzyme upon granule packaging. The lymphocytes of cathepsin C–null mice are therefore proposed to totally lack granzyme B activity and perforin-dependent cytotoxicity. Surprisingly, we show, using live cell microscopy and other methodologies, that cells targeted by allogenic CD8+ cytotoxic T lymphocyte (CTL) raised in cathepsin C–null mice die through perforin-dependent apoptosis indistinguishable from that induced by wild-type CTL. The cathepsin C–null CTL expressed reduced but still appreciable granzyme B activity, but minimal granzyme A activity. Also, in contrast to mice with inactivation of both their granzyme A/B genes, cathepsin C deficiency did not confer susceptibility to ectromelia virus infection in vivo. Overall, our results indicate that although cathepsin C clearly generates the majority of granzyme B activity, some is still generated in its absence, pointing to alternative mechanisms for granzyme B processing and activation. Cathepsin C deficiency also results in considerably milder immune deficiency than perforin or granzyme A/B deficiency
A clathrin/dynamin- and mannose-6-phosphate receptor–independent pathway for granzyme B–induced cell death
The 280-kD cation-independent mannose-6-phosphate receptor (MPR) has been shown to play a role in endocytic uptake of granzyme B, since target cells overexpressing MPR have an increased sensitivity to granzyme B–mediated apoptosis. On this basis, it has been proposed that cells lacking MPR are poor targets for cytotoxic lymphocytes that mediate allograft rejection or tumor immune surveillance. In the present study, we report that the uptake of granzyme B into target cells is independent of MPR. We used HeLa cells overexpressing a dominant-negative mutated (K44A) form of dynamin and mouse fibroblasts overexpressing or lacking MPR to show that the MPR/clathrin/dynamin pathway is not required for granzyme B uptake. Consistent with this observation, cells lacking the MPR/clathrin pathway remained sensitive to granzyme B. Exposure of K44A-dynamin–overexpressing and wild-type HeLa cells to granzyme B with sublytic perforin resulted in similar apoptosis in the two cell populations, both in short and long term assays. Granzyme B uptake into MPR-overexpressing L cells was more rapid than into MPR-null L cells, but the receptor-deficient cells took up granzyme B through fluid phase micropinocytosis and remained sensitive to it. Contrary to previous findings, we also demonstrated that mouse tumor allografts that lack MPR expression were rejected as rapidly as tumors that overexpress MPR. Entry of granzyme B into target cells and its intracellular trafficking to induce target cell death in the presence of perforin are therefore not critically dependent on MPR or clathrin/dynamin-dependent endocytosis
The Functional Basis for Hemophagocytic Lymphohistiocytosis in a Patient with Co-inherited Missense Mutations in the Perforin (PFN1) Gene
About 30% of cases of the autosomal recessive immunodeficiency disorder hemophagocytic lymphohistiocytosis are believed to be caused by inactivating mutations of the perforin gene. We expressed perforin in rat basophil leukemia cells to define the basis of perforin dysfunction associated with two mutations, R225W and G429E, inherited by a compound heterozygote patient. Whereas RBL cells expressing wild-type perforin (67 kD) efficiently killed Jurkat target cells to which they were conjugated, the substitution to tryptophan at position 225 resulted in expression of a truncated (∼45 kD) form of the protein, complete loss of cytotoxicity, and failure to traffic to rat basophil leukemia secretory granules. By contrast, G429E perforin was correctly processed, stored, and released, but the rat basophil leukemia cells possessed reduced cytotoxicity. The defective function of G429E perforin mapped downstream of exocytosis and was due to its reduced ability to bind lipid membranes in a calcium-dependent manner. This study elucidates the cellular basis for perforin dysfunctions in hemophagocytic lymphohistiocytosis and provides the means for studying structure–function relationships for lymphocyte perforin
The Type III Effectors NleE and NleB from Enteropathogenic E. coli and OspZ from Shigella Block Nuclear Translocation of NF-κB p65
Many bacterial pathogens utilize a type III secretion system to deliver multiple effector proteins into host cells. Here we found that the type III effectors, NleE from enteropathogenic E. coli (EPEC) and OspZ from Shigella, blocked translocation of the p65 subunit of the transcription factor, NF-κB, to the host cell nucleus. NF-κB inhibition by NleE was associated with decreased IL-8 expression in EPEC-infected intestinal epithelial cells. Ectopically expressed NleE also blocked nuclear translocation of p65 and c-Rel, but not p50 or STAT1/2. NleE homologues from other attaching and effacing pathogens as well OspZ from Shigella flexneri 6 and Shigella boydii, also inhibited NF-κB activation and p65 nuclear import; however, a truncated form of OspZ from S. flexneri 2a that carries a 36 amino acid deletion at the C-terminus had no inhibitory activity. We determined that the C-termini of NleE and full length OspZ were functionally interchangeable and identified a six amino acid motif, IDSY(M/I)K, that was important for both NleE- and OspZ-mediated inhibition of NF-κB activity. We also established that NleB, encoded directly upstream from NleE, suppressed NF-κB activation. Whereas NleE inhibited both TNFα and IL-1β stimulated p65 nuclear translocation and IκB degradation, NleB inhibited the TNFα pathway only. Neither NleE nor NleB inhibited AP-1 activation, suggesting that the modulatory activity of the effectors was specific for NF-κB signaling. Overall our data show that EPEC and Shigella have evolved similar T3SS-dependent means to manipulate host inflammatory pathways by interfering with the activation of selected host transcriptional regulators
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
Filamin (280-kDa actin-binding protein) is a caspase substrate and Is also cleaved directly by the cytotoxic T lymphocyte protease granzyme B during apoptosis
We used yeast two-hybrid screening to identify the cytoskeletal protein filamin as a ligand for the proapoptotic protease granzyme B, produced by cytotoxic T lymphocytes. Filamin was directly cleaved by granzyme B when target cells were exposed to granzyme B and the lytic protein perforin, but it was also cleaved in a caspase-dependent manner following the ligation of Fas receptors. A similar pattern of filamin cleavage to polypeptides of ∼110 and 95 kDa was observed in Jurkat cells killed by either mechanism. However, filamin cleavage in response to granzyme B was not inhibited by the caspase inhibitor z-Val-Ala-Asp-fluoromethylketone at concentrations that abolished DNA fragmentation. Filamin staining was redistributed from the cell membrane into the cytoplasm of Jurkat cells exposed to granzyme B and perforin and following ligation of Fas receptors, coincident with the morphological changes of apoptosis. Filamin-deficient human melanoma cells were significantly (although not completely) protected from granzyme B-mediated death compared with isogenic filamin-expressing cells, both in clonogenic survival and 51Cr release assays, whereas death from multiple other stimuli was not affected by filamin deficiency. Thus, filamin is a functionally important substrate for granzyme B, as its cleavage may account at least partly for caspase-independent cell death mediated by the granzyme
Cytosolic Delivery of Granzyme B by Bacterial Toxins: Evidence that Endosomal Disruption, in Addition to Transmembrane Pore Formation, Is an Important Function of Perforin
Granule-mediated cell killing by cytotoxic lymphocytes requires the combined actions of a membranolytic protein, perforin, and granule-associated granzymes, but the mechanism by which they jointly kill cells is poorly understood. We have tested a series of membrane-disruptive agents including bacterial pore-forming toxins and hemolytic complement for their ability to replace perforin in facilitating granzyme B-mediated cell death. As with perforin, low concentrations of streptolysin O and pneumolysin (causing 4,000 U/ml were perforin pores demonstrably large enough to account for transmembrane diffusion of granzyme B. We conclude that pore formation may allow granzyme B direct cytosolic access only when perforin is delivered at very high concentrations, while perforin's ability to disrupt endosomal trafficking may be crucial when it is present at lower concentrations or in killing cells that efficiently repair perforin pores