5 research outputs found

    Precision of Headwater Stream Permanence Estimates from a Monthly Water Balance Model in the Pacific Northwest, USA

    No full text
    Stream permanence classifications (i.e., perennial, intermittent, ephemeral) are a primary consideration to determine stream regulatory status in the United States (U.S.) and are an important indicator of environmental conditions and biodiversity. However, at present, no models or products adequately describe surface water presence for regulatory determinations. We modified the Thornthwaite monthly water balance model (MWBM) with a flow threshold parameter to estimate flow permanence and evaluated the model’s accuracy and precision for more than 1.3 million headwater stream reaches in the U.S. Pacific Northwest (PNW). Stream reaches were assigned to one of eight calibration groups by unsupervised classification based on sensitivity to MWBM parameters. Suitable MWBM parameter sets were identified by comparing modeled stream permanence estimates to surface water presence observations (SWPO). Parameter sets with accuracies > 65% were considered suitable. The MWBM estimated stream permanence with high precision at 40% of reaches, with poor precision at 20% of reaches, and no suitable parameter sets were identified for 40% of reaches. Results highlight the need for increased SWPO collection to improve calibration and assessment of stream permanence models. Additionally, implementation of the MWBM to estimate surface water presence indicates potential for process-based models to predict stream permanence with future development

    Precision of Headwater Stream Permanence Estimates from a Monthly Water Balance Model in the Pacific Northwest, USA

    No full text
    Stream permanence classifications (i.e., perennial, intermittent, ephemeral) are a primary consideration to determine stream regulatory status in the United States (U.S.) and are an important indicator of environmental conditions and biodiversity. However, at present, no models or products adequately describe surface water presence for regulatory determinations. We modified the Thornthwaite monthly water balance model (MWBM) with a flow threshold parameter to estimate flow permanence and evaluated the model’s accuracy and precision for more than 1.3 million headwater stream reaches in the U.S. Pacific Northwest (PNW). Stream reaches were assigned to one of eight calibration groups by unsupervised classification based on sensitivity to MWBM parameters. Suitable MWBM parameter sets were identified by comparing modeled stream permanence estimates to surface water presence observations (SWPO). Parameter sets with accuracies > 65% were considered suitable. The MWBM estimated stream permanence with high precision at 40% of reaches, with poor precision at 20% of reaches, and no suitable parameter sets were identified for 40% of reaches. Results highlight the need for increased SWPO collection to improve calibration and assessment of stream permanence models. Additionally, implementation of the MWBM to estimate surface water presence indicates potential for process-based models to predict stream permanence with future development

    Implications of Projected Climate Change for Groundwater Recharge in the Western United States

    No full text
    Existing studies on the impacts of climate change on groundwater recharge are either global or basin/ location-specific. The global studies lack the specificity to inform decision making, while the local studies do little to clarify potential changes over large regions (major river basins, states, or groups of states), a scale often important in the development of water policy. An analysis of the potential impact of climate change on groundwater recharge across the western United States (west of 100 degrees longitude) is presented synthesizing existing studies and applying current knowledge of recharge processes and amounts. Eight representative aquifers located across the region were evaluated. For each aquifer published recharge budget components were converted into four standard recharge mechanisms: diffuse, focused, irrigation, and mountain-systems recharge. Future changes in individual recharge mechanisms and total recharge were then estimated for each aquifer. Model-based studies of projected climate-change effects on recharge were available and utilized for half of the aquifers. For the remainder, forecasted changes in temperature and precipitation were logically propagated through each recharge mechanism producing qualitative estimates of direction of changes in recharge only (not magnitude). Several key patterns emerge from the analysis. First, the available estimates indicate average declines of 10-20% in total recharge across the southern aquifers, but with a wide range of uncertainty that includes no change. Second, the northern set of aquifers will likely incur little change to slight increases in total recharge. Third, mountain system recharge is expected to decline across much of the region due to decreased snowpack, with that impact lessening with higher elevation and latitude. Factors contributing the greatest uncertainty in the estimates include: (1) limited studies quantitatively coupling climate projections to recharge estimation methods using detailed, process-based numerical models; (2) a generally poor understanding of hydrologic flowpaths and processes in mountain systems; (3) difficulty predicting the response of focused recharge to potential changes in the frequency and intensity of extreme precipitation events; and (4) unconstrained feedbacks between climate, irrigation practices, and recharge in highly developed aquifer systems
    corecore