2,488 research outputs found

    Terrestrial laser scanning observations of geomorphic changes and varying lava lake levels at Erebus volcano, Antarctica

    Get PDF
    A Terrestrial Laser Scanning (TLS) instrument was used to image the topography of the Main Crater at Erebus volcano each December in 2008, 2009, and 2010. Our high-spatial resolution TLS scans provide unique insights into annual and decadal scale geomorphic evolution of the summit area when integrated with comparable data collected by an airborne instrument in 2001. We observe both a pattern of subsidence within the Inner Crater of the volcano and an ~ 3 m per-year drop in the lava lake level over the same time period that are suggestive of decreasing overpressure in an underlying magma reservoir. We also scanned the active phonolite lava lake hosted within the Inner Crater, and recorded rapid cyclic fluctuations in the level of the lake. These were sporadically interrupted by minor explosions by bursting gas bubbles at the lake surface. The TLS data permit calculation of lake level rise and fall speeds and associated rates of volumetric change within the lake. These new observations, when considered with prior determinations of rates of lake surface motion and gas output, are indicative of unsteady magma flow in the conduit and its associated variability in gas volume fraction.This material is based upon work supported by the National Science Foundation (Division of Polar Programs) under Grants ANT0838817 and ANT1142083. The Optech ILRIS 3D TLS instrument was provided by the UNAVCO Polar group with support from NSF grant award ANT0723223. CO receives additional support from the NEC Centre for the Observation and Modeling of Earthquakes, volcanoes and Tectonics (COMET). We gratefully acknowledge the following for assisting with fieldwork on Erebus: Nelia Dunbar, Bill McIntosh, Aaron Curtis, Nels Iverson, Matt Zimmerer, Melissa Kammerer, Nial Peters, Kayla Iacovino, Yves Moussallam, Tehnuka Ilanko, Anna Barford, and Harry Keys. We also acknowledge tremendous logistical support from the staff and the civilian contractors working out of McMurdo station on behalf of the Division of Polar Programs of NSF. We extend especial thanks to the helicopter support provided by PHI and Helicopters, New Zealand. We thank Mark Murray and Rick Aster for their comments on an early version of the manuscript, and Carolyn Parcheta and anonymous for formal reviews of the submitted manuscript.This is the final published version. It first appeared at http://dx.doi.org/10.1016/j.jvolgeores.2015.02.01

    Heterogeneous ketonic decarboxylation of dodecanoic acid: studying reaction parameters

    Get PDF
    Ketonic decarboxylation has gained significant attention in recent years as a pathway to reduce the oxygen content within biomass-derived oils, and to produce sustainable ketones. The reaction is base catalysed, with MgO an economic, accessible and highly basic heterogeneous catalyst. Here we use MgO to catalyse the ketonic decarboxylation of dodecanoic acid to form 12-tricosanone at moderate temperatures (250 °C, 280 °C and 300 °C) with low catalyst loads of 1% (w/w), 3% (w/w) and 5% (w/w) with respect to the dodecanoic acid, with a reaction time of 1 hour under batch conditions. Three different particle sizes for the MgO were tested (50 nm, 100 nm and 44 Όm). Ketone yield was found to increase with increasing reaction temperature, reaching approximately 75% yield for all the samples tested. Temperature was found to be the main control on reaction yield, rather than surface area or particle size

    Satellite assessment of land surface evapotranspiration for the pan-Arctic domain

    Get PDF
    Regional evapotranspiration (ET), including water loss from plant transpiration and soil evaporation, is essential to understanding interactions between land-atmosphere surface energy and water balances. Vapor pressure deficit (VPD) and surface air temperature are key variables for stomatal conductance and ET estimation. We developed an algorithm to estimate ET using the Penman-Monteith approach driven by Moderate Resolution Imaging Spectroradiometer (MODIS)-derived vegetation data and daily surface meteorological inputs including incoming solar radiation, air temperature, and VPD. The model was applied using alternate daily meteorological inputs, including (1) site level weather station observations, (2) VPD and air temperature derived from the Advanced Microwave Scanning Radiometer (AMSR-E) on the EOS Aqua satellite, and (3) Global Modeling and Assimilation Office (GMAO) reanalysis meteorology-based surface air temperature, humidity, and solar radiation data. Model performance was assessed across a North American latitudinal transect of six eddy covariance flux towers representing northern temperate grassland, boreal forest, and tundra biomes. Model results derived from the three meteorology data sets agree well with observed tower fluxes (r \u3e 0.7; P \u3c 0.003; root mean square error of latent heat flux \u3c30 W m−2) and capture spatial patterns and seasonal variability in ET. The MODIS-AMSR-E–derived ET results also show similar accuracy to ET results derived from GMAO, while ET estimation error was generally more a function of algorithm parameterization than differences in meteorology drivers. Our results indicate significant potential for regional mapping and monitoring daily land surface ET using synergistic information from satellite optical IR and microwave remote sensing

    A magnetic map leads juvenile European eels to the Gulf Stream

    Get PDF
    Migration allows animals to track the environmental conditions that maximize growth, survival, and reproduction [ 1–3 ]. Improved understanding of the mechanisms underlying migrations allows for improved management of species and ecosystems [ 1–4 ]. For centuries, the catadromous European eel (Anguilla anguilla) has provided one of Europe’s most important fisheries and has sparked considerable scientific inquiry, most recently owing to the dramatic collapse of juvenile recruitment [ 5 ]. Larval eels are transported by ocean currents associated with the Gulf Stream System from Sargasso Sea breeding grounds to coastal and freshwater habitats from North Africa to Scandinavia [ 6, 7 ]. After a decade or more, maturing adults migrate back to the Sargasso Sea, spawn, and die [ 8 ]. However, the migratory mechanisms that bring juvenile eels to Europe and return adults to the Sargasso Sea remain equivocal [ 9, 10 ]. Here, we used a “magnetic displacement” experiment [ 11, 12 ] to show that the orientation of juvenile eels varies in response to subtle differences in magnetic field intensity and inclination angle along their marine migration route. Simulations using an ocean circulation model revealed that even weakly swimming in the experimentally observed directions at the locations corresponding to the magnetic displacements would increase entrainment of juvenile eels into the Gulf Stream System. These findings provide new insight into the migration ecology and recruitment dynamics of eels and suggest that an adaptive magnetic map, tuned to large-scale features of ocean circulation, facilitates the vast oceanic migrations of the Anguilla genu

    Evaluation of MERRA Land Surface Estimates in Preparation for the Soil Moisture Active Passive Mission

    Get PDF
    The authors evaluated several land surface variables from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) product that are important for global ecological and hydrological studies, including daily maximum (Tmax) and minimum (Tmin) surface air temperatures, atmosphere vapor pressure deficit (VPD), incident solar radiation (SWrad), and surface soil moisture. The MERRA results were evaluated against in situ measurements, similar global products derived from satellite microwave [the Advanced Microwave Scanning Radiometer for Earth Observing System (EOS) (AMSR-E)] remote sensing and earlier generation atmospheric analysis [Goddard Earth Observing System version 4 (GEOS-4)] products. Relative to GEOS-4, MERRA is generally warmer (~0.5°C for Tmin and Tmax) and drier (~50 Pa for VPD) for low- and middle-latitude regions (\u3c50°N) associated with reduced cloudiness and increased SWrad. MERRA and AMSR-E temperatures show relatively large differences (\u3e3°C) in mountainous areas, tropical forest, and desert regions. Surface soil moisture estimates from MERRA (0–2-cm depth) and two AMSR-E products (~0–1-cm depth) are moderately correlated (R ~ 0.4) for middle-latitude regions with low to moderate vegetation biomass. The MERRA derived surface soil moisture also corresponds favorably with in situ observations (R = 0.53 ± 0.01, p \u3c 0.001) in the midlatitudes, where its accuracy is directly proportional to the quality of MERRA precipitation. In the high latitudes, MERRA shows inconsistent soil moisture seasonal dynamics relative to in situ observations. The study’s results suggest that satellite microwave remote sensing may contribute to improved reanalysis accuracy where surface meteorological observations are sparse and in cold land regions subject to seasonal freeze–thaw transitions. The upcoming NASA Soil Moisture Active Passive (SMAP) mission is expected to improve MERRA-type reanalysis accuracy by providing accurate global mapping of freeze–thaw state and surface soil moisture with 2–3-day temporal fidelity and enhanced (≀9 km) spatial resolution

    Study protocol for a randomised controlled trial of invasive versus conservative management of primary spontaneous pneumothorax

    Get PDF
    INTRODUCTION: Current management of primary spontaneous pneumothorax (PSP) is variable, with little evidence from randomised controlled trials to guide treatment. Guidelines emphasise intervention in many patients, which involves chest drain insertion, hospital admission and occasionally surgery. However, there is evidence that conservative management may be effective and safe, and it may also reduce the risk of recurrence. Significant questions remain regarding the optimal initial approach to the management of PSP

    Whole-Body Vibration Alleviates Symptoms of Morphine Withdrawal

    Get PDF
    Whole-body vibration at 80 Hz has previously been shown to blunt neuropathological markers and behavioral symptoms of alcohol dependence. Here, we evaluate its ability to ameliorate symptoms of morphine use and withdrawal. Behavioral and neurophysiological symptoms of withdrawal were reduced significantly by whole-body vibration treatment
    • 

    corecore