15 research outputs found

    The CRISPR/Cas Adaptive Immune System of Pseudomonas aeruginosa Mediates Resistance to Naturally Occurring and Engineered Phages

    Get PDF
    Here we report the isolation of 6 temperate bacteriophages (phages) that are prevented from replicating within the laboratory strain Pseudomonas aeruginosa PA14 by the endogenous CRISPR/Cas system of this microbe. These phages are only the second identified group of naturally occurring phages demonstrated to be blocked for replication by a nonengineered CRISPR/Cas system, and our results provide the first evidence that the P. aeruginosa type I-F CRISPR/Cas system can function in phage resistance. Previous studies have highlighted the importance of the protospacer adjacent motif (PAM) and a proximal 8-nucleotide seed sequence in mediating CRISPR/Cas-based immunity. Through engineering of a protospacer region of phage DMS3 to make it a target of resistance by the CRISPR/Cas system and screening for mutants that escape CRISPR/Cas-mediated resistance, we show that nucleotides within the PAM and seed sequence and across the non-seed-sequence regions are critical for the functioning of this CRISPR/Cas system. We also demonstrate that P. aeruginosa can acquire spacer content in response to lytic phage challenge, illustrating the adaptive nature of this CRISPR/Cas system. Finally, we demonstrate that the P. aeruginosa CRISPR/Cas system mediates a gradient of resistance to a phage based on the level of complementarity between CRISPR spacer RNA and phage protospacer target. This work introduces a new in vivo system to study CRISPR/Cas-mediated resistance and an additional set of tools for the elucidation of CRISPR/Cas function

    Interaction between Bacteriophage DMS3 and Host CRISPR Region Inhibits Group Behaviors of Pseudomonas aeruginosa

    Get PDF
    Bacteriophage infection has profound effects on bacterial biology. Clustered regular interspaced short palindromic repeats (CRISPRs) and cas (CRISPR-associated) genes are found in most archaea and many bacteria and have been reported to play a role in resistance to bacteriophage infection. We observed that lysogenic infection of Pseudomonas aeruginosa PA14 with bacteriophage DMS3 inhibits biofilm formation and swarming motility, both important bacterial group behaviors. This inhibition requires the CRISPR region in the host. Mutation or deletion of five of the six cas genes and one of the two CRISPRs in this region restored biofilm formation and swarming to DMS3 lysogenized strains. Our observations suggest a role for CRISPR regions in modifying the effects of lysogeny on P. aeruginosa

    Clustered Regularly Interspaced Short Palindromic Repeat-Dependent, Biofilm-Specific Death of Pseudomonas aeruginosa Mediated by Increased Expression of Phage-Related Genes

    Get PDF
    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (CRISPR/Cas) system is an adaptive immune system present in many archaea and bacteria. CRISPR/Cas systems are incredibly diverse, and there is increasing evidence of CRISPR/Cas systems playing a role in cellular functions distinct from phage immunity. Previously, our laboratory reported one such alternate function in which the type 1-F CRISPR/Cas system of the opportunistic pathogen Pseudomonas aeruginosa strain UCBPP-PA14 (abbreviated as P. aeruginosa PA14) inhibits both biofilm formation and swarming motility when the bacterium is lysogenized by the bacteriophage DMS3. In this study, we demonstrated that the presence of just the DMS3 protospacer and the protospacer-adjacent motif (PAM) on the P. aeruginosa genome is necessary and sufficient for this CRISPR-dependent loss of these group behaviors, with no requirement of additional DMS3 sequences. We also demonstrated that the interaction of the CRISPR system with the DMS3 protospacer induces expression of SOS-regulated phage-related genes, including the well-characterized pyocin operon, through the activity of the nuclease Cas3 and subsequent RecA activation. Furthermore, our data suggest that expression of the phage-related genes results in bacterial cell death on a surface due to the inability of the CRISPR-engaged strain to downregulate phage-related gene expression, while these phage-related genes have minimal impact on growth and viability under planktonic conditions. Deletion of the phage-related genes restores biofilm formation and swarming motility while still maintaining a functional CRISPR/Cas system, demonstrating that the loss of these group behaviors is an indirect effect of CRISPR self-targeting

    Mucin Glycans Signal through the Sensor Kinase RetS to Inhibit Virulence-Associated Traits in Pseudomonas aeruginosa

    No full text
    © 2020 Mucus is a densely populated ecological niche that coats all non-keratinized epithelia, and plays a critical role in protecting the human body from infections. Although traditionally viewed as a physical barrier, emerging evidence suggests that mucus can directly suppress virulence-associated traits in opportunistic pathogens including Pseudomonas aeruginosa. However, the molecular mechanisms by which mucus affords this protection are unclear. Here, we show that mucins, and particularly their associated glycans, signal through the Dismed2 domain of the sensor kinase RetS in P. aeruginosa. We find that this RetS-dependent signaling leads to the direct inhibition of the GacS-GacA two-component system, the activity of which is associated with a chronic infection state. This signaling includes downregulation of the type VI secretion system (T6SS), and prevents T6SS-dependent bacterial killing by P. aeruginosa. Overall, these results shed light on how mucus impacts P. aeruginosa behavior, and may inspire novel approaches for controlling P. aeruginosa infections

    eADAGE-1.0.0rc1

    No full text
    This is the source code required to reproduce data analysis figures from the initial preprint for, "System-wide automatic extraction of functional signatures in Pseudomonas aeruginosa with eADAGE." This includes the eADAGE method as well as code for the comparison methods

    Cloning, Assembly, and Modification of the Primary Human Cytomegalovirus Isolate Toledo by Yeast-Based Transformation-Associated Recombination

    No full text
    A pesar de que la arquitectura actual parece tener una tendencia general hacia lo mediático, aproximándose cada vez más a convertirse en un producto de consumo del mercado del arte, aún existen unos pocos arquitectos que conservan unos valores y una forma de pensar y hacer arquitectura considerados ya por muchos obsoletos. Uno de estos arquitectos es el madrileño Víctor López Cotelo y con este trabajo se pretende estudiar su obra para tratar de mostrar no sólo que no se trata de valores obsoletos, sino que suponen el mejor camino para llegar a la verdadera arquitectura y por ello estarán siempre vigentes, sin importar los cambios que haya en las modas. Para estudiar la obra de este arquitecto se realiza un recorrido por tres de sus edificios, situados en la ribera del río Sarela, en Santiago de Compostela. Tres obras (Ponte Sarela, la Vaquería y Pontepedriña) que parten de ruinas de piedra y variadas topografías para llegar a tres magníficos edificios en los que el tiempo es el protagonista, el pasado y el presente se dan la mano y la arquitectura se pone al servicio de la vida, con el objetivo de mejorar la de quienes la habitan

    Cloning, Assembly, and Modification of the Primary Human Cytomegalovirus Isolate Toledo by Yeast-Based Transformation-Associated Recombination

    No full text
    ABSTRACT Genetic engineering of cytomegalovirus (CMV) currently relies on generating a bacterial artificial chromosome (BAC) by introducing a bacterial origin of replication into the viral genome using in vivo recombination in virally infected tissue culture cells. However, this process is inefficient, results in adaptive mutations, and involves deletion of viral genes to avoid oversized genomes when inserting the BAC cassette. Moreover, BAC technology does not permit the simultaneous manipulation of multiple genome loci and cannot be used to construct synthetic genomes. To overcome these limitations, we adapted synthetic biology tools to clone CMV genomes in Saccharomyces cerevisiae. Using an early passage of the human CMV isolate Toledo, we first applied transformation-associated recombination (TAR) to clone 16 overlapping fragments covering the entire Toledo genome in Saccharomyces cerevisiae. Then, we assembled these fragments by TAR in a stepwise process until the entire genome was reconstituted in yeast. Since next-generation sequence analysis revealed that the low-passage-number isolate represented a mixture of parental and fibroblast-adapted genomes, we selectively modified individual DNA fragments of fibroblast-adapted Toledo (Toledo-F) and again used TAR assembly to recreate parental Toledo (Toledo-P). Linear, full-length HCMV genomes were transfected into human fibroblasts to recover virus. Unlike Toledo-F, Toledo-P displayed characteristics of primary isolates, including broad cellular tropism in vitro and the ability to establish latency and reactivation in humanized mice. Our novel strategy thus enables de novo cloning of CMV genomes, more-efficient genome-wide engineering, and the generation of viral genomes that are partially or completely derived from synthetic DNA. IMPORTANCE The genomes of large DNA viruses, such as human cytomegalovirus (HCMV), are difficult to manipulate using current genetic tools, and at this time, it is not possible to obtain, molecular clones of CMV without extensive tissue culture. To overcome these limitations, we used synthetic biology tools to capture genomic fragments from viral DNA and assemble full-length genomes in yeast. Using an early passage of the HCMV isolate Toledo containing a mixture of wild-type and tissue culture-adapted virus. we directly cloned the majority sequence and recreated the minority sequence by simultaneous modification of multiple genomic regions. Thus, our novel approach provides a paradigm to not only efficiently engineer HCMV and other large DNA viruses on a genome-wide scale but also facilitates the cloning and genetic manipulation of primary isolates and provides a pathway to generating entirely synthetic genomes

    eADAGE-1.0.0rc2

    No full text
    <p>This is the source code required to reproduce data analysis figures from the manuscript, "System-wide automatic extraction of functional signatures in <em>Pseudomonas aeruginosa</em> with eADAGE." This includes the eADAGE method as well as code for the comparison methods.</p

    eADAGE-1.0.0

    No full text
    <p>This is the source code required to reproduce data analysis figures from the manuscript, "System-wide automatic extraction of functional signatures in <em>Pseudomonas aeruginosa</em> with eADAGE." This includes the eADAGE method as well as code for the comparison methods.</p> <p>In addition to the bitbucket repository, five files have been added. One is a readme describing the files added for zenodo. The others are the<em> Pseudomonas aeruginosa</em> compendium used in this work, the weight matrices of the eADAGE model, the signatures from the eADAGE model, and the activity in each sample of the eADAGE model nodes.</p
    corecore