13 research outputs found

    What Is the Best Reference RNA? And Other Questions Regarding the Design and Analysis of Two-Color Microarray Experiments

    Get PDF
    The reference design is a practical and popular choice for microarray studies using two-color platforms. In the reference design, the reference RNA uses half of all array resources, leading investigators to ask: What is the best reference RNA? We propose a novel method for evaluating reference RNAs and present the results of an experiment that was specially designed to evaluate three common choices of reference RNA. We found no compelling evidence in favor of any particular reference. In particular, a commercial reference showed no advantage in our data. Our experimental design also enabled a new way to test the effectiveness of pre-processing methods for two-color arrays. Our results favor using an intensity-normalization and foregoing background-subtraction. Finally, we evaluate the sensitivity and specificity of data quality filters, and propose a new filter that can be applied to any experimental design and does not rely on replicate hybridizations

    Anti-RANKL treatment inhibits erosive joint destruction and lowers inflammation but has no effect on bone formation in the delayed-type hypersensitivity arthritis (DTHA) model

    Get PDF
    BACKGROUND: The aims of the present study were to determine the relationship between bone destruction and bone formation in the delayed-type hypersensitivity arthritis (DTHA) model and to evaluate the effect of receptor activator of nuclear factor ÎşB ligand (RANKL) blockade on severity of arthritis, bone destruction, and bone formation. METHODS: DTHA was induced in C57BL/6 mice. Inflammation, erosive joint damage, and new bone formation were semiquantitatively scored by histology. Osteoclast activity was assessed in vivo, and messenger RNA (mRNA) expression of mediators of bone destruction and bone formation were analyzed by mRNA deep sequencing. Serum concentrations of tartrate-resistant acid phosphatase 5b, carboxy-terminal telopeptide I (CTX-I), matrix metalloproteinase 3 (MMP3), and serum amyloid P component (SAP) were determined by enzyme-linked immunosorbent assay. Anti-RANKL monoclonal antibody treatment was initiated at the time of immunization. RESULTS: Bone destruction (MMP3 serum levels, cathepsin B activity, and RANKL mRNA) peaked at day 3 after arthritis induction, followed by a peak in cartilage destruction and bone erosion on day 5 after arthritis induction. Periarticular bone formation was observed from day 10. Induction of new bone formation indicated by enhanced Runx2, collagen X, osteocalcin, MMP2, MMP9, and MMP13 mRNA expression was observed only between days 8 and 11. Anti-RANKL treatment resulted in a modest reduction in paw and ankle swelling and a reduction of serum levels of SAP, MMP3, and CTX-I. Destruction of the subchondral bone was significantly reduced, while no effect on bone formation was seen. CONCLUSIONS: Anti-RANKL treatment prevents joint destruction but does not prevent new bone formation in the DTHA model. Thus, although occurring sequentially during the course of DTHA, bone destruction and bone formation are apparently not linked in this model

    Calcification and measurements of net proton and oxygen flux reveal subcellular domains in Acetabularia acetabulum

    No full text
    ?Vegetative adults of Acetabularia acetabulum (L.) Silva were studied as a model system for subcellular patterning in plants, and a description of several phenotypic and physiological characteristics that reveal patterns of subcellular differentiation in this unicellular macroalga was undertaken. Initially, calcification patterns were studied. Under favorable conditions, the rhizoid and most of the stalk calcified. Only the apical 10–20% of the stalk and a small region adjacent to the rhizoid remained uncalcified. Calcification in algae has been reported to result from a biologically mediated local increase in alkalinity. To test this model extracellular pH and extracellular hydrogen ion gradients were examined with ion-selective, self-referencing, electrodes. In the light, A. acetabulum displayed a general pattern of extracellular alkalinity around the entire alga, although in some individuals the region near the rhizoid and the rhizoid itself displayed extracellular acidity. Acetabularia acetabulum also displayed net hydrogen ion influx at the rhizoid and the apical half of the stalk, variable flux in the lower part of the stalk, and net hydrogen ion efflux at the base of the stalk next to the rhizoid. The lack of complete correlation between external pH patterns and calcification suggests that other factors contribute to the control of calcification in this alga. To examine whether net hydrogen ion flux patterns correlated with photosynthetic or respiration patterns, oxygen flux was measured along the stalk using self-referencing O2 electrodes. Photosynthetic oxygen evolution occurred at comparable levels throughout the stalk, with less evolution in the rhizoid. Respiration mainly occurred near and in the rhizoid, with less O2 consumption occurring more apically along the stalk. Our studies of calcification patterns, net hydrogen ion flux and O2 flux revealed several overlapping patterns of subcellular differentiation in A. acetabulum. <br/

    The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in Arabidopsis

    No full text
    The UNUSUAL FLORAL ORGANS (UFO) gene is required for multiple processes in the developing Arabidopsis flower, including the proper patterning and identity of both petals and stamens. The gene encodes an F-box-containing protein, UFO, which interacts physically and genetically with the Skp1 homolog, ASK1. In this report, we describe four ufo alleles characterized by the absence of petals, which uncover another role for UFO in promoting second whorl development. This UFO-dependent pathway is required regardless of the second whorl organ to be formed, arguing that it affects a basic process acting in parallel with those establishing organ identity. However, the pathway is dispensable in the absence of AGAMOUS (AG), a known inhibitor of petal development. In situ hybridization results argue that AG is not transcribed in the petal region, suggesting that it acts non-cell-autonomously to inhibit second whorl development in ufo mutants. These results are combined into a genetic model explaining early second whorl initiation/proliferation, in which UFO functions to inhibit an AG-dependent activity
    corecore